
Why semantics matter

Richard Bonichon

20200116

Outline

Programming is hard

Overview of a compiler

Compilers are complex

Language oddities zoo

1

Programming is hard

90%

of programmers

make some kind of errors when
coding binary search.

1

The div of death

1 #include <stdio.h>
2

3 int div(int a) {
4 return a / a;
5 }
6

7 int main () {
8 printf("d5 = %d ", div(5));
9 printf("d0 = %d\n", div(0));

10 return 0;
11 }

2

The answer(s)

-O gcc 8.3.0 clang 7.1.0
0 d5 = 1 d0 = 1 core dumped
1 d5 = 1 d0 = 1 d5 = 1 d0 = 1
2 d5 = 1 d0 = 1 d5 = 1 d0 = 1
3 d5 = 1 d0 = 1 d5 = 1 d0 = 1

3

What is printed ?

1 #include "stdio.h"
2

3 long foo(int *x, long *y) {
4 *x = 0;
5 *y = 1;
6 return *x;
7 }
8

9 int main(void) {
10 long l;
11 printf("%ld\n", foo((int *) &l, &l));
12 return 0;
13 }

4

Answer(s) on x86

-O gcc 8.3.0 clang 7.1.0
0 1 1
1 1 0
2 0 0
3 0 0

5

Overview of a compiler

What is a compiler ?

Definition
A compiler is computer software that transforms computer
code written in one programming language (the source
language) into another programming language (the target
language).

A usual reason for wanting to transform source code is to
create an executable program.

6

Compilation

int foo(int i, int j, int n) {
int l, k = 0;
for (l = i; l < n; l++)

k += i * j;
return k;

}
foo:
.LFB0:

.cfi_startproc
cmpl %edx, %edi
jge .L3
imull %edi, %esi
subl $1, %edx
subl %edi, %edx
imull %esi, %edx
leal (%rdx,%rsi), %eax
ret
.p2align 4,,10
.p2align 3

.L3:
xorl %eax, %eax
ret

$ gcc -O2 -S -c simple.c

7

Fair warning

A sufficiently advanced compiler is indistinguishable
from an adversary.
– John Regehr

8

Architecture of a modern compiler

Source code

Abstract syntax tree

Intermediate
representation

tree
Assem tree Control-flow graph

Explicit register language

Assembly language

Lexing and parsing

Activation records

Instruction
selection

Control-flow analysis

Dataflow analysis
Register allocation

Code emission

9

Compilers must preserve the
semantics of the original program

through its many passes.

9

Semantics

Definition

• Semantics detail the meaning of the program (its
statements, expressions, . . .)

• Formal semantics interpret programs using mathematics

10

Uses

Understanding a programming language

• what we can trust as regular programmers

• what we need to give as compiler programmers

Tool for designing languages

Fundamentals to show/prove properties of programs

11

Different types of semantics

Operational semantics

• What the program computes

• Concrete

Denotational semantics

• What the program computes

• Abstract

Axiomatic semantics

• Properties of programs

12

Example of operational semantics

Semantic rules for a simple imperative language without loops

〈x := a, s〉 → s[x 7→ AJaKs]
Assigns

〈skip, s〉 → s
Skip

〈S1, s〉 → s ′ 〈S2, s
′〉 → s ′′

〈S1;S2, s〉 → s ′′
Seq

〈S1, s〉 → s ′ JbKs = >
〈if b then S1 else S2, s〉 → s ′

If>

〈S2, s〉 → s ′ JbKs = ⊥
〈if b then S1 else S2, s〉 → s ′

If⊥

13

Lexing

Goal

Break the input into lexical unit (tokens)

"Does the teacher like compilation ?"
⇒

"Does", "the", "teacher", "like", "compilation", "?"

14

Parsing

Goal

Check the structure of sentences (i.e. the grammar)

A question of the form

Auxiliary/modal subject (main verb) (direct object) (question mark)

is grammatically valid.

15

Keywords

Lexing

• Regular expressions

• NFA

• DFA

• Minimization

Parsing

• BNF

• LL(k)

• LR(k)

16

Lexing and parsing transform a
concrete syntax tree into an abstract

syntax tree.

16

Abstract Syntax Tree : x ∗ ((y + 1)− 3)

x * ((y + 1) - 3)

∗

x −

+

y 1

3.0

17

Typing

Definition (Typing)
Typing consists in attributing types to the data of the
program

What for ?
Guarantee that programs make sense, i.e. are valid programs.

18

Typing systems landscape (Odersky)

weak strong
dynamic

static Haskell
OCaml

Scala

Assembly JavaScript Ruby Python, Clojure

C

TypeScript
Dart

Java
C#

19

Example

Γ ` b : bool Γ ` E1 : T Γ ` E2 : T

Γ ` if b then E1 else E2 : T
If

Γ ` x : T Γ ` e : T

Γ ` x := e : unit
Assigns

20

Intermediate representation

What is an IR ?

Intermediate representation (IR) is the data structure or code
used internally by a compiler to represent source code,
usually for further processing (optimization, translation)

A good IR must be:

• accurate (no loss of information)

• independent of source/target languages.

Examples

• LLVM

• Gimple

21

Stack frame allocation

...

argument n

...

argument 1

static link

previous frame

frame pointer

local variables

ret address

temporaries

saved registers

argument m

...

argument 1

static link stack pointer

current frame

next frame

...

↑ higher addresses

↓ lower addresses

22

Example

1 long myfunc(long a, long b, long c, long d,
2 long e, long f, long g, long h)
3 {
4 long xx = a * b * c * d * e * f * g * h;
5 long yy = a + b + c + d + e + f + g + h;
6 long zz = utilfunc(xx, yy, xx % yy);
7 return zz + 20;
8 }

23

x86-64 stack on calling myfunc

...

...

h rbp + 24

g rbp + 16

ret address rbp + 8

saved rbp rbp

xx rbp - 8

yy rbp - 16

zz rsp

reserved zone

...

rdi : a

rsi : b

rdx : c

rcx : d

r8 : e

r9 : f

A
rg
um

en
ts

24

Control-Flow Graph (CFG)

#define N 10

int main () {
int a,b,c;

a = 0;
l1:
b = a + 1;
c = c + b;
a = b * 2;
if (a < N) goto l1;
return c;

}

a = 0

b = a + 1

c = c + b

a = b * 2

a > N

return c
false

true

25

CFG construction in a nutshell

Howto

• Every node has one statement;

• A directed edge connects two nodes N and M whenever
M can be executed right after N in the program

26

Remarks

In order to know if one statement can follow another, one
needs precise semantics!

CFGs can be constructed directly from the AST or after it: it
is a basic data structure of compilation or static analysis.

CFGs provide a means to compute reachability of a given
program part. An unreachable code in the CFG:

• will never ever be executed and

• can safely be removed from the program at compile time
(this is dead code).

27

Optimizations are done on the CFG
through data-flow analyses.

27

Common subexpression elimination

Definition
Given a statement

• s : t ← x � y,

where the expression x � y is available at s,

the computation within s can be eliminated.

28

Example CSE

Before

1 a = b * c + g;
2 d = b * c * e;

After

1 tmp = b * c;
2 a = tmp + g;
3 d = tmp * e;

29

Constant/copy propagation

Definition
Suppose we have a statement s1 : x ← t,

where t is either a constant, or a simple variable.

And another : s2 : y ← x bop z.

x is constant in s2 if:

• s1 reaches s2 and

• no other definition of x reaches s2

In this case : s2 : y ← t bop z

30

Example

Before

1 t = 12;
2 x = 4;
3 y = t;
4 z = x * y - t;

After

1 t = 12;
2 x = 4;
3 y = t;
4 z = 36;

31

Dead code elimination

Definition
If there is a quadruple

• s : a ← b � c; or

• s : a ← M[x],

such that a is not live-out of s,

then the quadruple can be deleted.

32

Example

Before

1 t = 12;
2 x = 4;
3 y = t;
4 z = 36;

After

1 z = 36;

33

Register allocation

This phase needs to assign:

• • the many temporaries to a small number of concrete
machine registers;

• • — where possible — the source and destination of a
MOVE to the same register so that the MOVE can be
deleted.

34

More on compilation

35

Lexing / parsing

36

Compilers are complex

Source of errors

Coding in C (for example) exposes the programmer to several
difficulties

1. Tricky semantics

2. Unforeseen optimizations

3. Undefined behaviors (might be seen as tricky semantics),
due to the fact that it is an unsafe language

Only 3 is specific to C . . .

37

In particular

1 #include <stdio.h>
2

3 int main(void)
4 {
5 unsigned char a = 0xff;
6 char b = 0xff;
7 int c = a == b; // true, or false?
8 printf("c = %d\n", c);
9 }

38

Division by zero

1 /* Linux kernel : lib/mpi/mpi-pow.c */
2

3 if (!msize)
4 msize = 1 / msize; /* provoke a signal */

39

Oversized shift (Fix for CVE-2009-4307)

1 /* Linux kernel: fs/ext4/super.c */
2

3 groups_per_flex = 1 << sbi->s_log_groups_per_flex;
4 /* There are some situations, after shift the value of
5 'groups_per_flex' can become zero and divsion with 0
6 result in fixpoint divide exception.
7 */
8 if (groups_per_flex == 0) return 1;
9

10 flex_group_count = ... / groups_per_flex;

40

Silent breakage (from Regehr)

1 #include <limits.h>
2 #include <stdio.h>
3

4 int foo(int x) {
5 return (x + 1) > x;
6 }
7

8 int main(void) {
9 printf("%d\n", (INT_MAX + 1) > INT_MAX);

10 printf("%d\n", foo(INT_MAX));
11 return 0;
12 }

INT_MAX + 1 is both larger and not larger than INT_MAX.

41

Mixing signed/unsigned

1 #include <stdio.h>
2

3 int main (void)
4 {
5 long a = -1;
6 unsigned b = 1;
7 printf ("%d\n", a > b);
8 return 0;
9 }

42

Why, oh why ?

CPUs are typically fastest on integers at their native size.

On x86, 32-bit arithmetic can be twice as fast as 16-bit one.

C is a language focused on performance, so it will do the
integer promotion to make the program as fast as possible.

In a nutshell
Keep integer promotion rules in mind to avoid integer
overflow vulnerability issues.

43

Undefined behaviors

Some C operations are left implementation-defined but other
are undefined in the Standard.

C compilers trust the programmer not to submit code with
undefined behaviors.

They optimize code under such assumptions.
Permissible undefined behavior ranges from ignoring
the situation completely, with unpredictable results,
to having demons fly out of your nose.

44

But it works on my computer !

Somebody once told me that in basketball you can’t
hold the ball and run.

I got a basketball and tried it and it worked just fine.

He obviously didn’t understand basketball.
– Roger Miller

45

Why is it good and bad ?

Good

• Makes compiler’s job easier
For example, loop optimizations do not have to worry
about signed integers overflows — it is undefined
behavior.

Bad

• 191 kinds of undefined behaviors in C99

46

Security problems

1 void process_something(int size)
2 {
3 // Catch integer overflow.
4 if (size > size + 1) abort();
5 ... // Error checking from this code elided.
6

7 char *string = malloc(size + 1);
8 read(fd, string, size);
9 string[size] = 0;

10 do_something(string);
11 free(string);
12 }

47

Optimization is hard

1 void contains_null_check(int *p)
2 {
3 int dead = *p;
4 if (p == 0)
5 return;
6 *p = 4;
7 }

48

Unwanted dead code elimination

1 void check_password(char *pwd);
2

3 void get_password(void)
4 {
5 char pwd[64];
6 if (retrieve_password(pwd, sizeof(pwd))) {
7 check_password(pwd);
8 }
9 memset(pwd, 0, sizeof(pwd));

10 }

49

What is returned ?

1 #include <iostream>
2 #include <complex>
3 using namespace std;
4

5 int main() {
6 complex<int> delta;
7 complex<int> mc[4] = {0};
8 int di;
9

10 for(di = 0; di < 4; di++, delta = mc[di]) {
11 cout << "di:" << di << endl;
12 cout << "delta: " << delta << endl;
13 }
14 cout << "mc[di]:" << mc[di] << endl;
15 return 0;
16 }

50

Take away

At low-level, there is (almost) no
undefined behavior.

aka

Low-level does not lie.

aka

This is why we’ll focus on it !

50

Language oddities zoo

Java

1 public class Main {
2

3 public static void main(String[] args) {
4 int a1 = 1000, a2 = 1000;
5 System.out.println(a1 == a2);
6 Integer b1 = 1000, b2 = 1000;
7 System.out.println(b1 == b2);
8 Integer c1 = 100, c2 = 100;
9 System.out.println(c1 == c2);

10 }
11 }

51

OCaml (< 4.05.0)

1 open Nums
2

3 let x = Big_int.big_int_of_int 1 ;;
4

5 x = x ;;

52

OCaml

1 let s = string_of_bool true ;;
2

3 s.[0] <- 'f' ;;
4 s.[1] <- 'a' ;;
5 s.[3] <- 'x' ;;
6

7 1 = 1;;
8

9 Printf.printf "1 = 1 est %b\n" (1 = 1) ;;

53

OCaml

1 (*#warnings "-3";; (* :-*) *)
2

3 let f x =
4 match x with
5 | true -> "T"
6 | false -> "F"
7 ;;
8

9 f true ;;
10 f false ;;
11

12 (f false).[0] <- 'T' ;;
13 (f true).[0] <- 'F' ;;
14

15 f true ;;
16 f false ;;

54

Python

1 l = [s for s in [1, 2, 3]]
2 print(l)
3 print(s)

55

JavaScript: got arithmetic ?

1 1 / 0
2

3 NaN == NaN
4

5 999999999999999
6

7 9999999999999999
8

9 "2" + 1
10

11 "2" - 1
12

13 "2" - - 1

56

JavaScript: ==

1 [1] == [1]
2

3 [] == ![]
4

5 [] == true
6

7 ![] == true
8

9 2 == [2]
10

11 0 == '0'
12

13 0 == '0.0'
14

15 '0' == '0.0'
16

17 null == undefined

57

More fun

• https://www.youtube.com/watch?v=et8xNAc2ic8

• https://github.com/denysdovhan/wtfjs

58

https://www.youtube.com/watch?v=et8xNAc2ic8
https://github.com/denysdovhan/wtfjs

PHP

1 $x = "2d8" ;
2 $y = "2d8" ;
3

4 ++$x == $y + 1;
5

6 print (++ $x . "\n") ;
7 print (++ $x . "\n") ;
8

9 print($y + 1 . "\n") ;

59

PHP

1 $h1 = md5 ('QNKCDZO') ;
2 $h2 = md5 ('240610708') ;
3 $h3 = md5 ('A169818202') ;
4 $h4 = md5 ('aaaaaaaaaaaumdozb') ;
5 $h5 = sha1('badthingsrealmlavznik') ;

Which ones are == to each other ?

A. none

B. h3 and h5

C. h1, h3 and h4

D. La réponse D

60

Scala (until 2.12)

1 List("a", "b", "c").toSet() + "d"

61

Questions ?

https://rbonichon.github.io/teaching/2020/asi36/
61

https://rbonichon.github.io/teaching/2020/asi36/

	Programming is hard
	Overview of a compiler
	Compilers are complex
	Language oddities zoo

