
Protections

20200203

Outline

How to protect against vulnerabilites

Stack canaries

Executable space protection

ASLR

CFI on execution

1

How to protect against
vulnerabilites

Write correct code, obviously . . .

Some people write fragile code and
some people write very structurally
sound code, and this is a condition
of people.
– K. Thompson

To err is human, but to really foul
up requires a computer.
– Anon

2

Use help/mitigation against bad code

3

Stack canaries

Stack canaries

What it is
A public canary value is placed right above function-local
stack buffers in the stack frame.

Its integrity is checked prior to function return.

AKA cookie, stack cookie

What it provides
Ensure the saved base pointer and function return address
have not been corrupted

Needs compiler support only

4

How it looks

5

Summary

The good Í

• Pure compiler-based solution (no OS support)

• Most stack-based buffer overflows are countered

The bad ë

• Protect only variables above it in the stack

• Not always active

• Sometimes the cookie can be guessed (see later)

6

Implementations

VS /Gs[size]

If a function requires more than size bytes of stack space for
local variables, its stack probe is initiated. By default, the
compiler generates code that initiates a stack probe when a
function requires more than one page of stack space (i.e.
/Gs4096).

GCC -fstack-protector

Emit extra code to check for buffer overflows, such as stack
smashing attacks. This is done by adding a guard variable to
functions with vulnerable objects. This includes functions
that call alloca, and functions with buffers larger than 8
bytes.

7

Terminator canary

Definition
A terminator canary is comprised of common termination
symbols, such as ’\0’ (0x00), ” (0x0a), ’̊’ (0x0d), EOF (-1)

Example: 0x000a0dff

Effectiveness
The attacker cannot use common C string libraries, since
copying functions will terminate on the termination symbols.

• Either the attack is detected (canary does not hold the
same value)

• Or it stops it due to termination symbols.

8

Random canary

Definition

The loader chooses a word-sized (32/64 bits) random canary
string on program start.

Effectiveness
The randomness makes the value of the canary hard to guess

9

Behavior

1 #include <string.h>
2

3 int main(int argc, char *argv[])
4 {
5 char buf[10];
6 strcpy(buf, argv[1]);
7 return buf[5];
8 }

10

StackGuard effectiveness (Cowan et al., 2000)

Program without protection with protection
dip 3.3.7 root shell program halts
elm 2.4 root shell program halts
perle 5.003 root shell program halts
Samba root shell program halts
SuperProbe root shell program halts
umount / libc 5.3.12 root shell program halts
wwwcount 2.3 httpd shell program halts
zgv 2.7 root shell program halts

11

Considerations

Efficiency
Canary checks for every function causes a performance
penalty.

≈ 8% for Apache

PointGuard
Canaries are also placed next to

• function pointers

• setjmp buffers

Greater performance impact

12

Defeating canaries

13

Example vulnerable on prior versions

1 int f (char ** argv)
2 {
3 int pipa; // useless variable
4 char *p;
5 char a[30];
6

7 p=a;
8

9 printf ("p=%x\t -- before 1st strcpy\n",p);
10 strcpy(p,argv[1]); // <== vulnerable strcpy()
11 printf ("p=%x\t -- after 1st strcpy\n",p);
12 strncpy(p,argv[2],16);
13 printf("After second strcpy ;)\n");
14 }
15

16 int main (int argc, char ** argv) {
17 f(argv);
18 execl("back_to_vul","",0); //<-- The exec that fails
19 printf("End of program\n");
20 }

14

Weakness of canary randomization

Canary is randomized whenever libc is loaded.

That is every time, execve() is used . . .

but not when fork() is used

15

Brute-forcing the canary

Technique :: Byte-per-byte brute-forcing

• On average ≈ 512 attempts

• Brute-force + timing analysis

• Incorrect guesses fail fast, correct guesses fail slow

Limitations

• Need the canary to stay the same (i.e. forking daemons)

16

Canaries for every one

1 #include <stdio.h>
2

3 /* Commenting out or not using the string.h header will cause this
4 * program to use the unprotected strcpy function.
5 */
6 #include <string.h>
7

8 int main(int argc, char **argv)
9 {

10 char buffer[5];
11 printf ("Buffer Contains: %s , Size Of Buffer is %d\n",
12 buffer,sizeof(buffer));
13 strcpy(buffer,argv[1]);
14 printf ("Buffer Contains: %s , Size Of Buffer is %d\n",
15 buffer,sizeof(buffer));
16 }

17

In a nutshell

Performance - several instructions per function
- a few %
- removable in safe functions

Deployment No code change / recompilation
Compatiblity 100%
Safety guarantee None

18

Executable space protection

Broad idea

• C does not specify what happens when a data pointer is
used as if it were a function pointer
(implementation-defined)

• Self-modifying code is pretty rare — outside of efficient
JIT compilers

Idea

• Mark data memory as non-executable

• Needs OS support

19

Implementations

OS Date Version Name(s)
OpenBSD 2003 3.3 W^X
Windows 2004 XP DEP
FreeBSD 2004 5.3
Linux 2004 2.6 PaX, ExecShield
macOS 2005 10.4
macOS 2007 > 10.5

20

Implementation details

NX/XD/XN bit

Modern AMD/Intel/ARM machines have a dedicated bit
which flags memory pages as writable or else executable.

When set, the page is not executable

x86’s original 32-bits table did not have such a mechanism.

Other implementations

• On x86, the mechanism is sometimes emulated (through
CS segment)

• PaX NX also emulates the functionality on 32-bits

21

In (excruciating) details

NX Software Reserved Page Frame Number U P Cw Gl L D A Cd Wt O W V

No execute
Software (working set index)

Reserved
Software Field (prototype PTE)

Software Field (copy-on-write)

Global
Large Page

Dirty

Accessed
Cache disabled
Write through

Owner
Write
Valid

63 62 51 40 11 10 9 8 7 6 5 4 3 2 1 0

22

Limitations

Warning
Data Execution Prevention does nothing to prevent a buffer
overflow to rewrite the saved frame pointer or the saved
instruction pointer (aka. return address).

A single call to SqlExe("drop table ...") is thus
manageable.

23

Counterattacks

• Indirect code injection

• Jump-to-libc attacks

• Data-only attacks

24

Return-oriented programming

Definition

Return oriented programming (ROP) is an exploit technique

1. Gains control of the call stack

2. Executes carefully chose machine instruction sequences
already present called gadgets

Remarks

• There exist Turing-complete sets of gadgets

• This is an extension to return-into-libc attacks

25

Overlapping instructions (J. Kinder)

Other instructions are embedded inside your instructions.

This can be used to find gadgets inside your code, e.g. jmp
esp (0xffe4)

26

Gadgets

• Gadgets ending with a ret are typically found in function
epilogues

• Tools (ropper, ROPgadget, . . .) help in finding gadgets
and ROP chains to

Origin

• Intended instructions

• Unaligned bytes

Build

• String gadgets into units of functionality (loads/stores,
jumps, arithmetic)

• Goal : execute another shellcode
27

Basic example

1 #include <stdio.h>
2 #include <string.h>
3 #include <stdlib.h>
4

5 void not_called(int pseudo_arg)
6 {
7 printf("Enjoy your shell!\n");
8 system("/bin/bash");
9 }

10

11 void vulnerable_function(char* string)
12 {
13 char buffer[100];
14 strcpy(buffer, string);
15 }
16

17 int main(int argc, char** argv)
18 {
19 vulnerable_function(argv[1]);
20 return 0;
21 } 28

More involved example

1 #include <stdio.h>
2 #include <string.h>
3 #include <stdlib.h>
4

5 char* not_used = "/bin/sh";
6

7 void not_called(int pseudo_arg) {
8 printf("Not quite a shell...\n");
9 system("/bin/date");

10 }
11

12 void vulnerable_function(char* string) {
13 char buffer[100];
14 strcpy(buffer, string);
15 }
16

17 int main(int argc, char** argv) {
18 vulnerable_function(argv[1]);
19 return 0;
20 }

29

kBouncer (Pappas et al., 2013)

Observation 1

• ROP attacks issue returns to non-call-preceded addresses

• Make all return instructions target call-preceded addresses

Observation 2

• ROP attacks are built of long sequences of short gadgets

• Do not allow long sequences of short gadgets

Based on stack history, decide to abort

30

Anti-ROP

State-of-the-art
Lightweight ROP countermeasures are still exploitable

Stronger defenses

• G-Free (K. Onarlioglu et al. 2010) remove unintended
return instructions and encrypt return addresses

31

In a nutshell

Performance no impact if hardware support
<1% in PaX

Deployment Kernel support (common)
Modules opt-in

Compatiblity Can break JIT compilers, unpackers
Safety guarantee Code injected to NX page Never eXecutes

but one does not need it . . .

32

ASLR

Address-space Layout Randomization

Definition
ASLR is a technique to prevent exploitation of memory
corruption vulnerabilities.

It rearranges the address space positions of a process, e.g.,
the base of the executable, the stack, the heap, and libraries.

Limitations

• Needs OS support

• ASLR + NX needs PIE

33

How it works

Most everything can be randomized that way :

• code

• global variables

• heap allocations, . . .

ASLR basically consists of randomly distributing the
fundamental parts of a process (executable base, stack
pointers, libraries, . . .)

34

Is it enabled ?

1 ldd /bin/ls

linux-vdso.so.1 (0x00007ffef19f7000)
libcap.so.2 => /usr/lib/libcap.so.2 (0x00007f6b2c68f000)
libc.so.6 => /usr/lib/libc.so.6 (0x00007f6b2c2d8000)
/lib64/ld-linux-x86-64.so.2 => /usr/lib64/ld-linux-x86-64.so.2 (0x00007f6b2cab5000)

1 ldd /bin/ls

linux-vdso.so.1 (0x00007ffdf0bad000)
libcap.so.2 => /usr/lib/libcap.so.2 (0x00007f5d4548f000)
libc.so.6 => /usr/lib/libc.so.6 (0x00007f5d450d8000)
/lib64/ld-linux-x86-64.so.2 => /usr/lib64/ld-linux-x86-64.so.2 (0x00007f5d458b5000)

35

What is actually randomized ?

1 cat /proc/self/maps | grep -E 'stack|heap|libc'

• Run 1

5608b9a39000-5608b9a5a000 rw-p 0 00:00 0 [heap]
7f1be2370000-7f1be251e000 r-xp 0 fe:02 2885816 /usr/lib/libc-2.26.so
7f1be251e000-7f1be271d000 —p 001ae000 fe:02 2885816 /usr/lib/libc-2.26.so
7f1be271d000-7f1be2721000 r–p 001ad000 fe:02 2885816 /usr/lib/libc-2.26.so
7f1be2721000-7f1be2723000 rw-p 001b1000 fe:02 2885816 /usr/lib/libc-2.26.so
7ffc28a7e000-7ffc28a9f000 rw-p 0 00:00 0 [stack]

• Run 2

56012b646000-56012b667000 rw-p 0 00:00 0 [heap]
7f080d001000-7f080d1af000 r-xp 0 fe:02 2885816 /usr/lib/libc-2.26.so
7f080d1af000-7f080d3ae000 —p 001ae000 fe:02 2885816 /usr/lib/libc-2.26.so
7f080d3ae000-7f080d3b2000 r–p 001ad000 fe:02 2885816 /usr/lib/libc-2.26.so
7f080d3b2000-7f080d3b4000 rw-p 001b1000 fe:02 2885816 /usr/lib/libc-2.26.so
7ffdab447000-7ffdab468000 rw-p 0 00:00 0 [stack]

36

Implementations

OS Date Version
OpenBSD 2003 3.3
Linux 2005 2.6.12
Windows 2007 Vista
macOS 2007 > 10.5

• FreeBSD still has no support in -CURRENT

37

Impact on execution

ASLR has a moderate impact (≈ 3%) on performance

38

Attacking ASLR

• Parts of addresses are not randomized (i.e. GOT)

• Data and BSS segments are mapped to static locations.
Most applications have at least one interesting global

• Any info leak disclosing location can be used to "guess"
the where gadgets are.

39

.got & .plt

• GOT : Global Offset Table

• PLT : Procedure Linking Table

40

Further protections: RELRO

Definition
RELRO is a generic mitigation technique to harden the data
sections of an ELF binary/process.

Partial RELRO

• gcc -Wl,-z,relro

• Reorders the binary :
.got, .dtors precede
data sections

• non-PLT GOT is RO

• GOT still writable

Full RELRO
• gcc
-Wl,-z,relro,-z,now

• Partial RELRO + GOT is
read-only

41

KASLR

Definition
KASLR randomizes the kernel code location in memory on
system boot

Weakness
Memory distribution of kernel is unchanged once installed.

⇒ On next system restart no new random memory
distribution will be performed.

Implementation

NetBSD 2017 current

42

KARL

Definition (OpenBSD)
Kernel binary files are generated by distributing the kernel’s
internal files in a random order each time the system is
restarted or updated, so each system will work every time it
is booted with a unique kernel totally different from other
systems at binary level

43

Why KARL ?

Our immune systems work better when they are
unique. Otherwise one airline passenger from Sin-
gapore with a new flu could wipe out Europe (they
should fly to Washington instead).
Our computers should be more immune.
– Theo de Raadt

44

In a nutshell

Performance Randomize once at load time
Deployment Kernel support

No recompilation needed
Compatiblity Transparent to PIE programs
Safety guarantee Not much in x86, better in amd64

but one does not need code injection . . .

45

CFI on execution

General idea

Compiler generates a static over-approximation of licit jump
sites for all dynamic jumps.

At runtime, it is checked that jump targets are authorized.

46

Example (U. Erlingsson et al.)

1 bool lt(int x, int y)
2 {
3 return x < y;
4 }
5

6 bool gt(int x, int y)
7 {
8 return x > y;
9 }

10

11 sort2(int a[], int b[], int len)
12 {
13 sort(a, len, lt);
14 sort(b, len, gt);
15 }

47

CFI enforcement

sort2

...
call sort

label 55
...

call sort

label 55
...

ret ..

sort

...
call 17, R

label 23
...

ret 55

lt

label 17
...

ret 23

label 17
...

ret 23

48

Property

The CFI security policy dictates that software execution must
follow a CFG path determined ahead of time.

The CFI security policy needs be conservative: i.e. all valid
executions should be allowed event at the cost of allowing
invalid executions.

49

Overhead and slowdown

Code-size increase

≈ 8%

Execution slowdown

0%–45% (mean: 16%)

50

Lightweight CFI

Control-flow destinations must be aligned on multi-word
boundaries.

• Allow all basic blocks

• Basically only disallows jumping into overlapping
instructions

51

Other measures

Sanitizers are runtime checkers dedicated to specific bugs

Memory sanitization (ASan)
Detect out-of-bound and use-after-free bugs

Undefined behavior sanitization (UBSan)
Detects the used of undefined behaviors at runtime

Impact

• 73% processing time

• 340% memory usage

52

Pre-summary

Protection Exploitation
NX easy
ASLR feasible
canaries depends
NX + ASLR feasible
NX + canaries depends
ASLR + canaries hard
All 3 hard

53

Summary

Memory corruption vulnerabilities are well-addressed by the
combination of

• W^X

• Stack canaries

• ASLR

Using only one of these techniques is not enough.

Compilers are including more advanced measures (CFI,
sanitizers) to further mitigate these issues.

54

Questions ?

https://rbonichon.github.io/teaching/2020/asi36/
54

https://rbonichon.github.io/teaching/2020/asi36/

	How to protect against vulnerabilites
	Stack canaries
	Executable space protection
	ASLR
	CFI on execution

