e I I N Ve

e e
N O U W N H O ©

18
19
20
21
22
23
24

4. Exercises

ASI36
2020

1 Introduction

This exercise sheet uses AFL to fuzz small C programs. Here are some external
resources to help you use the tool

Tutorials on AFL e https://fuzzing-project.org/tutorial3.html
e https://labs.nettitude.com/blog/fuzzing-with-american-fuzzy-lop-afl/
e https://www.evilsocket.net/2015/04/30/fuzzing-with-afl-fuzz-a-practical-example-:

e https://research.aurainfosec.io/hunting-for-bugs-101/

Important command-line options e AFL_SKIP_CPUFREQ=1
e AFL_USE_ASAN=1

Since AFL depends very much on randomness, it is important to run the
experiments multiple times to draw conclusions. If you find something once,
you might just have been lucky; if you find it 90% of the time on a consequent
number of runs, it’s another matter.

2 Magic bytes

Let’s consider the following program.

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>
#include <string.h>
#include <unistd.h>
#include <fentl.h>

void crash()
{

raise (SIGSEGV);
}

#define BUFSIZE 1024

int main(int argc, char* argv[])
{
char inp[BUFSIZE] = { 0 };
if (argc > 1)
{

int f = open(argv[1], O_RDONLY);
read(f, inp, BUFSIZE);

int in = atoi(inp);

if (in == Oxdeadbeef) {



https://fuzzing-project.org/tutorial3.html
https://labs.nettitude.com/blog/fuzzing-with-american-fuzzy-lop-afl/
https://www.evilsocket.net/2015/04/30/fuzzing-with-afl-fuzz-a-practical-example-afl-vs-binutils/
https://research.aurainfosec.io/hunting-for-bugs-101/

25 printf("Aaargh!\n");
26 crash();
27 }
28 printf("You lose\n");
29 return O;
30 }
31 printf("Please, at least one arg !\n");
32 return 0;
33| }
e Fuzz this program for 5 minutes with an empty seed. Did you find a crash?

e Fuzzers include a fair bit of randomization, maybe you just were not lucky.
Now rerun this for 5 more minutes (and maybe once more).

Did you find a crash this time?

Try out fuzzing with non-empty seeds.

— Try with the expected solution — it should fin the crash right away.

— Give smaller and smaller prefixes to the solution. When does the
fuzzer not reach the target anymore ?

Rewrite the program so that it is semantically equivalent to the original
program (no loss of functionality) but so that the fuzzer can reach the
buggy path with an empty seed.

3 Hard-to-find events

tnclude <stdio.h>
include <stdlib.h>
include <string.h>
include <unistd.h>
include <fcntl.h>

;R W™ R W

int f, *p, *p_alias;
char inp[10], *buf[5];

#define K0 (-1)
#define 0K 0

T
H O © 0N U A W N e

=
w N

void bad_func(int *p) {
free(p);

[
'S

15| }
16
17| int benign_func(int *p) {

18 if (inp[2] == 'F' && inp[3] == 'o' && inp[4] == '0') {
19 free(p);

20 return KO;

21 ¥

22 return 0K;

23| }

24
25| void func() {

26 if (inp[1] == 'A") {

27 bad_func(p) ;

28 if (inp[2] == 'F' && inp[3] == 'u' && inp[4] == 'z') {
29 *p = 1;

30 } else {

31 p = malloc(sizeof (int));

32 p_alias = p;

33 if (benign_func(p_alias) == -1) return;
34 *p_alias = 1;

35 free(p);

36 }

37 T



38
39

41
42
43
44
45
46
47
48
49

}

int main (int argc, char *argv[]) {
f = open(argv[1], O_RDONLY);
read(f, inp, 10);

if (inp[0] == 'U") {
p = malloc(sizeof (int));
p_alias = p; // p_alias points to the same area as p
func();

}

return 0K;

1. Find and explain the vulnerability contained in this program.

2. Run the fuzzer multiple times (5 minutes) on the above program. Did you
find any crash ? If not, can you guess why 7

3. Recompile your program with AddressSanitizer activated, and fuzz it
again, multiple times. Do you find crashing inputs ?



	Introduction
	Magic bytes
	Hard-to-find events

