
Fuzzing

20210209

Outline

Introduction

Principles of fuzzing

The new generation

1

Introduction

Fuzzing : your code is buggier than mine

2

It’s about testing

3

What is fuzzing ?

At its core, fuzzing is random testing.

4

A short (selective) pre-history

1981 Random testing is a cost-effective alternative to
systematic testing techniques (Duran & Natos)

1983 "The Monkey" (Capps)

1988 Birth of the term "fuzzing" (Miller)

5

The initial assignment

The goal of this project is to evaluate the robustness of
various UNIX utility programs, given an unpredictable
input stream. [. . .] First, you will build a fuzz gen-
erator. This is a program that will output a random
character stream. Second, you will take the fuzz gen-
erator and use it to attack as many UNIX utilities as
possible, with the goal of trying to break them.

1/3 of Unix utilities crashed, hung or failed upon fuzzing
inputs.

6

Shades of fuzzing

GreyboxBlackbox Whitebox

7

Blackbox

Key property
A blackbox fuzzer is unaware of the program structure

Because of that, blackbox fuzzers are necessarily limited. They
thus can be considered dumb.

8

Whitebox

Key distinction
A whitebox fuzzer leverages program analysis to reach its
targets:

Usual targets are:

1. code coverage;

2. program location.

This is usually synonym with "Dynamic Symbolic Execution".

Whitebox fuzzers are smart.

9

Coverage criteria

1 void
2 f(int a, int b, int * x)
3 {
4 if (a > 1 && b == 0)
5 *x = *x / a;
6 if (a == 2 || *x > 1)
7 *x = *x + 1;
8 }

• Instructions (I)

• All decisions (D)

• All simple conditions (C)

• All conditions / decisions (DC)

• All combinations of conditions (MC)

• All paths (P)

10

Wait ? Whitebox fuzzers ?

x = input ();
y = input ();
z = 2 * y;

z == x

x > y + 10Γ = > ∧ 2y0 6= x0

Γ = > ∧ 2y0 = x0 ∧ x0 > y0 + 10

Γ = > ∧ 2y0 = x0 ∧ x0 ≤ y0 + 10

σ = ∅; Γ = >

σ = {x := x0, y := y0, z := 2y0}

Γ = > ∧ 2y0 = x0

11

Greybox

Greybox fuzzers favor leveraging instrumentations instead of
program analysis.

12

Principles of fuzzing

Stages

1. Preprocess

2. Scheduling

3. Input Generation

4. Input Evaluation

5. Configuration Updating

6. Continue

13

General algorithm (Manes et al. 2019)

Input: C, tlimit

Output: B // a finite set of bugs
1 B← ∅
2 C← Preprocess(C)
3 while telapsed < tlimit ∧ Continue(C) do
4 conf ← Schedule(C, telapsed, tlimit)
5 tcs ← InputGen(conf)

// Obug is embedded in a fuzzer
6 B′, execinfos ← InputEval(conf, tcs, Obug)
7 C← ConfUpdate(C, conf, execinfos)
8 B← B ∪ B′

9 return B

14

Stages (summarized) i

Preprocess

• User supplies set of fuzz configurations as input, gets a
potentially-modified set of fuzz configurations.

• May perform a variety of actions
• insert instrumentation code to Program Under Tests

(PUT),
• measure execution speed of seed files
• etc.

15

Stages (summarized) ii

Schedule

• Takes in :
• current set of fuzz configurations
• current time, and
• a timeout

• Selects a fuzz configuration to be used for the current
fuzz iteration.

16

Stages (summarized) iii

Input Generation

• Takes in a fuzz configuration

• Returns a set of concrete test cases.

• Some fuzzers use a seed in for generating test cases,
while others use a model or grammar as a parameter.

17

Stages (summarized) iv

Input Evaluation

• Takes in :
• a fuzz configuration
• a set of test cases, and
• a bug oracle.

• Executes PUT on test cases and checks if executions
violate the security policy using the bug oracle.

• Outputs set of bugs found B′ and information about each
of the fuzz runs.

18

Stages (summarized) v

Configuration Update

• Takes in:
• a set of fuzz configurations,
• current configuration, and
• the information of each fuzz runs.

• May update the set of fuzz configurations.
For example, many grey-box fuzzers reduce the number of
fuzz configurations based on fuzz runs.

19

Stages (summarized) vi

Continue

• Takes a set of fuzz configurations as input and outputs a
boolean indicating whether a next fuzz iteration should
happen or not.

• This models white-box fuzzers that can terminate when
there are no more paths to discover.

20

Preprocess: Instrumentation

Goal
Gather execution feedback during runs

Types of instrumentation

Static usually at compile time, sometimes rewriting the
binary (e.g., afl-gcc)

Dynamic more costly but can instrument dlls (e.g.,
afl-qemu)

21

Preprocess: Seed Selection

Goal
Find minimal set that maximizes a coverage metric

Examples of metrics

AFL branch coverage with logarithmic counters on
each branch

Honggfuzz # executed instructions, branches, unique basic
blocks

22

Scheduling Problem

Goal
Pick the configuration that is the most likely to lead to the
most favorable outcome.

• finding most unique bugs

• maximizing coverage

Exploration vs Exploitation
Scheduling balances:

• time gathering more information on configurations
(exploration) and

• time fuzzing configurations believed to lead to favorable
outcomes (exploitation).

23

Scheduling: Blackbox

Blackbox fuzzers can only use fuzz outcomes (time spent,
bugs found).

Examples

• Favoring the configuration with a high success rate
(#bugs/#runs)

• Prefer faster configurations (collection of information on
them is quicker) & fix the time per configurations
selection instead the number of runs (avoid spending a lot
of time in slow configuration).

24

Scheduling: Greybox i

AFL

• Maintain a population of configurations with a fitness
metric, apply some degree of genetic transformation
(mutation, recombination)

• On a control-flow edge, AFL considers fastest and
smallest inputs as "fitter"

• Fix number of run per selection.

25

Scheduling: Greybox ii

AFLFast

• On a control-flow edge, favor the one that has been chose
least

• On tie, favor the one that exercises path that has been
selected the least

• The fuzzing time follows a power schedule

26

Input generation: Generation-based

Predefined model

• Network protocols

• EBNF

• System calls (types and number of arguments)

Inferred

• Synthesize the grammar of the parser

• Capture packets and infer network protocols

• Observe I/O behavior and infer state machine

• Machine learning

27

Input generation: Mutation-based

• Use initial seeds providing a structure of a valid input
(file, network packets, . . .)

• Mutate portions of previous inputs to generate new
mostly valid test cases.

28

Bit-flip

Basics
Flip:

• a fixed-number of bits or

• a random number of bits

Mutation ratio
Determines the number of bit flips for a single generated
input.

A good mutation ratio can be inferred through program
analysis.

29

Arithmetic mutation

Basics
Perform an arithemtic operation on a sequence of bytes seen
as an integer.

Example
AFL selects 4-bytes values i , generates a random integer r
and applies i + r or i − r .

The range of r is tunable.

30

Block-based mutation

Block
Arbitrary sequence of bytes

Mutations

1. Insert a new block at a random position

2. Delete a randomly selected block

3. Replace a randomly selected block

4. Permutes the order of block sequences

5. Resize a seed by appending a block

6. Take a random block from another seed to insert/replace

31

Dictionary-based mutation

Some fuzzers use "magic" values like 0 or −1, or format
strings for mutation.

Examples

AFL Uses 0, 1, −1 for integer mutations

Radamsa unicode strings

GPF %x, %s for string mutations

32

What about whitebox fuzzing?

x = input ();
y = input ();
z = 2 * y;

z == x

x > y + 10Γ = > ∧ 2y0 6= x0

Γ = > ∧ 2y0 = x0 ∧ x0 > y0 + 10

Γ = > ∧ 2y0 = x0 ∧ x0 ≤ y0 + 10

σ = ∅; Γ = >

σ = {x := x0, y := y0, z := 2y0}

Γ = > ∧ 2y0 = x0

33

Input Evaluation: Bugs

Default policy
A program execution terminated by a fatal signal is a
violation

This is enough for memory vulnerabiliies since they usually
trigger segmentation faults.

Problem
The default policy will not detect corruptions leading to valid
addresses.

To this effect, code sanitizers are needed, i.e., a form of
runtime monitor that will trigger a fatal signal on property
violation.

34

Input Evaluation: Triage i

Deduplication
Prune test cases triggering the same bugs as another one.

Implemented by stack backtrace hashing or coverage-based
deduplication (AFL).

Prioritization
Rank or group violating test cases according to severity and
uniqueness, aka determines a form of exploitability.

!exploitable: 4-rank scales (yes, probably, unknown, not
likely).

35

Input Evaluation: Triage ii

Test case minimization
Identify the part of the test case that is necessary to trigger
the violation.

Produce a smaller test case (e.g., AFL sets bytes to 0 and
shorten the test case).

This is not specific to fuzzers and thus dedicated techniuqes
have been developed and can be reused here.

36

Configuration Updating

Evoluting the seed pool
Select the fittest.

Example

• Use on node/branch coverage: a newly discovered
branch/node is sign of fitness !

• AFL also takes into account the number of times a
branch has been taken

• Angora also adds calling context

• Steelix checks input offsets affect the progress in
comparison instructions

37

A concrete example : AFL

38

The AFL loop

39

Efficiency

40

The new generation

Genealogy (Manes et al. 2019)

Black-box Grey-box White-box

Network File Kernel

Web

UI

File KernelConcurrency

Kernel

Miller et al. � [?]

PROTOS �[?]

SPIKE [?]

SNOOZE � [?]

KiF � [?]

LZFuzz � [?]

KameleonFuzz � [?]

T-Fuzz � [?]

PULSAR � [?]

tlsfuzzer [?]
llfuzzer [?]
Ruiter et al. � [?]

TLS-Attacker � [?]

DELTA � [?]

zzuf [?]

FileFuzz [?]

SPIKEfile [?]

jsfunfuzz [?]
DOMfuzz [?]
ref fuzz [?]

Fuzzbox [?]

MiniFuzz [?]

BFF [?]

cross fuzz [?]

LangFuzz � [?]
Nduja [?]

BlendFuzz � [?]

FOE [?]

Householder � [?, ?]

Woo et al. � [?]

Rebert et al. � [?]

Melkor [?]

Dewey et al. � [?, ?]

SymFuzz � [?]

CLsmith � [?]

IFuzzer � [?]

Peach [?]

antiparser [?]
Autodafé � [?]

GPF [?]

Sulley [?]

Radamsa [?]

Tavor [?]

Dharma [?]

NeuralFuzzer [?]

Hodor [?]

IoTFuzzer � [?]

fsfuzzer [?]

Trinity [?]

perf fuzzer � [?]

KernelFuzzer [?]

Digtool � [?]

DIFUZE � [?]

IMF � [?]

orangfuzz [?]

FLAX � [?]

Doupé et al. � [?]

honggfuzz [?]

Mamba � [?]

AFL [?]

Nightmare [?]

Choronzon � [?]

QuickFuzz � [?]

AFLFast � [?]

classfuzz � [?]

GRR [?]

Skyfire � [?]

GLADE � [?]

VUzzer � [?]

AFLGo � [?]

Angora � [?]

CollAFL � [?]

syzkaller [?]

Triforce [?]

kAFL � [?]

Sidewinder [?]

EFS � [?]

LibFuzzer [?]

CalFuzzer � [?]

AtomFuzzer � [?]

RaceFuzzer � [?]

DeadlockFuzzer � [?]

AssetFuzzer � [?]

MagicFuzzer � [?]

SAGE � [?, ?, ?]

KLEE � [?]

BuzzFuzz � [?]

jFuzz � [?]

SmartFuzz � [?]

TaintScope � [?]

BitFuzz � [?]

FuzzBALL � [?, ?, ?]

kb-Anonymity � [?]

Mahmood et al. � [?]

Dowser � [?]

GRT � [?]

MutaGen � [?]

Narada � [?]

Concurency

Driller � [?]

MoWF � [?]

CAB-Fuzz � [?]

T-Fuzz � [?]

Chopper � [?]

1990
∼

2001

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

41

Driller (2016)

Goal
Combination of SE & greybox fuzzing

Key insight
When the fuzzer finds "hard conditions", launch SE to solve
them, then let the fuzzer continue with this new input.

42

Driller : Inner workings

43

Driller : Results

44

Vuzzer (2017) i

Proposal
Configurations are added only upon discovering a new
non-error handling block (statically determined).

The configuration fitness is the weighted sum of the log of
the frequency over exercised blocks.

Key insight
Error-handling blocks lower the chance of vulnerabiliies.

Consequence
VUzzer prefers normal blocks that are rare according to CFG
random walks.

45

Vuzzer (2017) ii

Table 1: Vuzzer vs AFL: #crashes

Software Vuzzer AFL
mpg321 337 19
gif2png/libpng 127 7
pdf2svg/libpoppler 13 0
tcdpump/libpcap 3 0
tcptrace/libpcap 403 238
djpeg/libjpeg 1 0

46

Vuzzer (2017) iii

Table 2: Vuzzer vs AFL: #inputs

Software Vuzzer AFL
mpg321 23.6k 883k
gif2png/libpng 43.2k 1.84m
pdf2svg/libpoppler 5k 923k
tcdpump/libpcap 77.8k 2.89m
tcptrace/libpcap 40k 3.29m
djpeg/libjpeg 90k 35.9m

47

Vuzzer (2017) iv

48

Vuzzer (2017) v

Table 3: New bugs discovered

Program Bug type Fixed ? Reported
tcpdump Oob read Í ë

mpg321 Oob read ë Í

mpg321 Double free ë Í

pdf2svg Null ptr deref Í ë

pdf2svg Abort Í ë

pdf2svg Assert failure Í ë

tcptrace Oob read ë Í

gif2png Oob read ë Í

49

AFLGo (2017) i

Goal
Generating inputs with the objective of reaching a set of
program locations.

Key idea : Directed Greybox Fuzzing

Applications

• Patch testing

• Crash reproduction

• Static analysis report verification

• Information flow detection

50

AFLGo (2017) ii

Measure

• Distance between a function & a set of target functions
= harmonic mean
Harmonic mean can distinguish between a node that is
close to one target and further from another and one that
is equidistant from both (average mean may be equal).

Scheduling
Key insight :: simulated annealing

Use more energy to fuzz seeds closer to the targets.

Enter exploitation after given exploration time has elapsed.

51

FairFuzz (2018) i

Goal

• Achieve better branch coverage for AFL

• No extra instrumentation

Key steps

1. Identify rare branches

2. New mutation technique to increase probability of hitting
rare branches.

52

FairFuzz (2018) ii

53

Angora (2018)

54

Angora (2018) i

Goal
Increase branch coverage by solving path constraints without
symbolic execution

Key ingredients

• Context-sensitive branch coverage

• Byte-level taint tracking

• Gradient descent-based search

• Type & shape inference

55

Angora (2018) ii

Table 4: Results

Program Listed bugs Angora AFL Vuzzer Steelix
uniq 28 29 9 27 7
base64 44 48 0 17 43
md5sum 57 57 1 ë 28
who 2136 1541 1 50 194

Omitted from table : SES, FUZZER

56

Angora (2018) iii

57

Angora (2018) iv

Table 5: Angora vs AFL line coverage

Program AFL Angora
file-5.32 2070 2534
jhead-3.00 347 789
xmlwf(expat)-2.2.5 1980 2025
djpeg(ijg)-v9b 5401 5509
readpng(libpng)-1.6.34 1592 1799
nm-2.29 6372 7721
objdump-2.29 3448 6216
size-2.29 2839 4832

58

Angora (2018) v

Table 6: Angora vs AFL branch coverage

Program AFL Angora
file-5.32 1462 1899
jhead-3.00 218 789
xmlwf(expat)-2.2.5 2905 3158
djpeg(ijg)-v9b 1677 1782
readpng(libpng)-1.6.34 872 1007
nm-2.29 4105 4693
objdump-2.29 2071 3393
size-2.29 1792 2727

59

Angora (2018) vi

Table 7: Angora vs AFL unique crashes

Program AFL Angora
file-5.32 0 6
jhead-3.00 19 52
xmlwf(expat)-2.2.5 0 0
djpeg(ijg)-v9b 0 0
readpng(libpng)-1.6.34 0 0
nm-2.29 12 29
objdump-2.29 4 48
size-2.29 6 48

60

Achievements summary

Ideas have been explored

• Better branch coverage (deeper, broader)

• Directed targeting

• Lightweight dynamic constraint solving

• Combination with other analyses:
• Symbolic execution
• Static analyses

61

Standard benchmarks: an emerging concern

62

Baseline

63

Who’s who

64

More goodness to come . . .

Fuzzing is a very active research area

Check https://wcventure.github.io/FuzzingPaper/

New developments in 2019-2020

• Hawkeye (CCS ’18)

• DigFuzz (NDSS ’19)

• MemFuzz (ICSE ’19)

• Eclipser (ICSE ’19)

• Matryoshka (CCS ’19)

• SAVIOR (S&P ’20)

• . . .

65

https://wcventure.github.io/FuzzingPaper/

FAAS

Recent years have seen initiatives from "MAANG" members

Google OSS-Fuzz

Microsoft Project Springfield

66

Types of bugs (OSS-Fuzz 2016)

67

Anti-fuzzing (Antifuzz, 2019) i

Attacking fuzzer’s assumptions
Fuzzers depends on some implicit support:

• Coverage feedback

• Crash detection

• Speedy loop

• (sometimes) Solvable constraints

Coverage feedback countermeasure
Add fake function calls depending on input. This add many
new paths, all of them "interesting"

68

Anti-fuzzing (Antifuzz, 2019) ii

Crash detection countermeasure
Use common anti-debugging technique.

Fake crash catching

Execution speed countermeasure
Check validity of inputs : this induces a slowdown that is
enough to delay fuzzers.

Thwart constraint solving
Instead of checking conditionals against a value v, check
against sha256(v).

69

Evaluating anti-fuzzing

Fuzzers do not find bugs in LAVA-M anymore

Code coverage is reduced by ≥ 90%

Performance overhead is negligible

70

Questions ?

https://rbonichon.github.io/teaching/2021/asi36/
70

https://rbonichon.github.io/teaching/2021/asi36/

	Introduction
	Principles of fuzzing
	The new generation

