
2. Exercises

ASI36

2021

1 Using the tools : objdump, gdb, ida, . . .
The following tools can be of help:

• objdump, to display various in information about object files;

• nm, to list symbols from object files;

• strace, to trace system calls and signals;

• gdb, to debug/follow the execution of your binaries (use gdb -tui to get
some UI);

• ida, for a graphical view of the CFG.
See their respective man pages (e.g., man objdump) for details.
A very thorough summary of gdb’s command can be found at

http://www.yolinux.com/TUTORIALS/GDB-Commands.html

Various cheat sheets are available online, such as this one:

https://cs.brown.edu/courses/cs033/docs/guides/gdb.pdf

A freeware version of IDA is available from the following page
https://www.hex-rays.com/products/ida/support/download_freeware.

shtml
Other reverse engineering tools that you may want to try include:

• Ghidra;

• radare.

1.1 gdb Extensions
It may be useful to install an extended configuration of gdb. Tools like GEF,
pwndbg, gdb-dashboard can enhance your experience with gdb. Here is where
you can download them

Tools URL
GEF https://github.com/hugsy/gef
gdb-dashboard https://github.com/cyrus-and/gdb-dashboard
pwndbg https://github.com/pwndbg/pwndbg

You could also try out gdbgui if you dislike the above extensions.

1

http://www.yolinux.com/TUTORIALS/GDB-Commands.html
https://cs.brown.edu/courses/cs033/docs/guides/gdb.pdf
https://www.hex-rays.com/products/ida/support/download_freeware.shtml
https://www.hex-rays.com/products/ida/support/download_freeware.shtml
https://ghidra-sre.org/
https://www.radare.org/n/
https://github.com/hugsy/gef
https://github.com/cyrus-and/gdb-dashboard
https://github.com/pwndbg/pwndbg
https://www.gdbgui.com/

1.2 Disabling basic protections
These practical entry-level exercises need be done without the usual protections
(W^X, canaries, ASLR), which are the subject of the next lecture.

That is why all binaries are compiled with the following options from gcc.

1 gcc -fno-stack-protector -z execstack

1.2.1 A note about ASLR

There is a good chance that your kernel uses ASLR. Check it out with the
following command.

1 cat /proc/sys/kernel/randomize_va_space

If it returns something that is not 0 (as it should), then it ASLR is enabled
(as it should).

To disable it temporarily, spawn a shell like so:

1 setarch `uname -m` -R `which bash`

All child processes launched from this shell will have ASLR disabled.
This link contains a detailed discussion.

2 Optimization (optims.c)
1 #include <stdio.h>
2 #include <limits.h>
3
4 int g(int a, int b) {
5 if (a < 0 || b <= 0) {
6 printf("Bad arguments\n");
7 return -1;
8 }
9

10 if (a + b < 0) {
11 printf("Overflow error\n");
12 return -2;
13 }
14 printf("No detected errror\n");
15 return a + b;
16 }
17
18 int main() {
19 int r;
20 // Add code here
21 return 0;
22 }

1. Add the following calls:

(a) r = g(4, 8)

(b) r = g(2, INT_MAX)

What are the possible results, depending on the compiler ?

Try with:

• gcc

• gcc -O2

2

https://askubuntu.com/questions/318315/how-can-i-temporarily-disable-aslr-address-space-layout-randomization

• gcc -O2 -fno-strict-overflow

2. Propose a solution to make this function secure. You may use https://
wiki.sei.cmu.edu/confluence/display/c/INT32-C.+Ensure+that+operations+
on+signed+integers+do+not+result+in+overflow

3 Basics (basics.c)
1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int main(int argc, char *argv[])
5 {
6 char x = 0;
7 char t[8] = {'0'};
8 int i;
9

10 if (argc != 3)
11 {
12 printf("Usage: p num1 num2\n");
13 exit(1);
14 }
15
16 for (i = 0; i <= atoi(argv[2]); i++)
17 t[i] = atoi(argv[1]);
18
19 if (x != 0) printf("You win!\n");
20 else printf("You lose\n");
21
22 return 0;
23 }

1. Compile this program with gcc using the fno-stack-protector flag.

This program may exhibit several behaviors. List them all and find test
inputs for them. Explain what happens in every case, e.g., by drawing the
execution stack.

Look at the assembly code emitted for main in order to retrieve the offsets
in the stack of the local variables.

2. Compile this program with gcc using the fstack-protector flag. What
are the possible behaviors now ?

Look at the assembly code and compare with the previous result question.

4 Take the heap (h.c)
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 char *p ;
6
7 int f (char a[])
8 {
9 p = (char *) malloc (16 * sizeof(char));

10 strcpy (p, "ls ");
11 if (strlen(a) > 14)
12 {
13 printf("Filename too long !\n");
14 free(p);
15 return 0;
16 }

3

https://wiki.sei.cmu.edu/confluence/display/c/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow
https://wiki.sei.cmu.edu/confluence/display/c/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow
https://wiki.sei.cmu.edu/confluence/display/c/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow

17 strcat(p, a);
18 return 1 ;
19 }
20
21
22 int main(int argc, char *argv[])
23 {
24 char *p3;
25 if (!f(argv[1]))
26 {
27 printf("Error:: Enter your log message (< 24 characters)\n");
28 p3 = (char *) malloc (24 * sizeof (char));
29 scanf("%s", p3);
30 }
31 system(p) ;
32 return 0 ;
33 }

This program takes a directory name as input and prints its content, like ls.
If the argument is too long, an error message is printed and the user is asked to
enter a string.

Test this program and explain why it is vulnerable.
Find how you can use this program to execute any shell command of your

choice (fortune, xeyes, figlet "foo", cowsay "pwned". . .).

5 Format-string exploitation (fmt.c)
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 int main(int argc, char *argv[]) {
6 char text[1024];
7 static int test_val = -72, next_val = 0x11111111;
8
9 if(argc < 2) {

10 printf("Usage: %s <text to print>\n", argv[0]);
11 exit(0);
12 }
13 strcpy(text, argv[1]);
14
15 printf("The right way to print user-controlled input:\n");
16 printf("%s", text);
17
18 printf("\nThe wrong way to print user-controlled input:\n");
19 printf(text);
20
21 printf("\n[*] test_val @ 0x%08x = %d 0x%08x\n", &test_val, test_val, test_val);
22 printf("[*] next_val @ 0x%08x = %d 0x%08x\n", &next_val, next_val, next_val);
23
24 if (next_val == 0xddccbbaa) printf ("You win!\n");
25 else printf ("You lose!\n");
26
27 exit(0);
28 }

1. Make the following code print "You win!" on the terminal.
In order to do that, try to understand what the following does, assuming
next_val is located at 0x5655702c.

1 ./fmt.bin $(printf "\x2c\x70\x55\x56")%x%x%8x%n
2 ./fmt.bin $(printf "\x2c\x70\x55\x56")%x%x%100x%n
3 ./fmt.bin $(printf "\x2c\x70\x55\x56JUNK\x2c\x70\x55\x56JUNK\x2c\x70\x55\x56")%x%x%100x%n%150x%n%228x%n

2. Find about direct parameter access and do the same exercise with it.
Beware of wrap-arounds.

4

3. The last question uses short writes (as described below) to achieve the
same results.

A short is usually a two-byte word. Format parameters have a special way
of dealing with them. See the length modifier section of the man page of
printf.

As direct parameters can still be used, propose an enhanced solution us-
ing short writes with direct parameter access. Beware of possible wrap-
arounds.

Read about short writes.

6 Exploiting reverse engineering (bof)
For the last exercise, you only have the binary. The program bof has a vulner-
ability that you need to exploit. You do not have access to the source code of
bof.c.

In case of failure, it prints "I tawt I taw a putty tat!".
In case of success, for any of the 3 questions below, something else is printed.

Guess what it prints, before answering any of said questions.

1. Make the program execute the uwin function.

2. Make the program execute the superwin function.

3. Make the program execute the superwin function twice.

5

	Using the tools : objdump, gdb, ida, …
	gdb Extensions
	Disabling basic protections
	A note about ASLR

	Optimization (optims.c)
	Basics (basics.c)
	Take the heap (h.c)
	Format-string exploitation (fmt.c)
	Exploiting reverse engineering (bof)

