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ABSTRACT
Automated cyber defense tools require the ability to analyze binary
applications, detect vulnerabilities and automatically patch those
vulnerabilities. The insertion of security mechanisms that operate
at function boundaries (e.g, control flow mitigation, stack guards)
require automated detection of those boundaries. This paper intro-
duces a publicly available function boundary detection tool for 32
and 64-bit Intel binaries running under Linux, that is more accurate
than other reported approaches.
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1 INTRODUCTION
Automated binary analysis can be used to help detect security vul-
nerabilities or other flaws in executable binaries without source
code, documentation or knowledge of the executable. In addition,
as shown in the DARPA Cyber Grand Challenge (CGC) [4, 15, 16],
binary analysis can assist in the automatic patching of binaries to
help mitigate vulnerabilities. Effective binary analysis starts with
disassembly, followed by extraction of the structure and organiza-
tion of the code: the locations of executable code, read-only data
and dynamic data; the locations of functions; and the location and
organization of more complex data structures. Some of this infor-
mation is readily available in the binary’s file headers and metadata;
information that is not part of the executable, but is needed by the
operating system to load and run the program. The rest must be
derived from the instructions and data of the program.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC ’19, December 9–13, 2019, San Juan, PR, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7628-0/19/12. . . $15.00
https://doi.org/10.1145/3359789.3359825

Functions are logical constructs in higher level source code that
are supported by basic microprocessor instructions and features.
A compiler can take the higher level source code and faithfully
translate the functions into machine instructions, or can modify
the functions. For example, a compiler can take a small function
and embed the code for that function within the body of the calling
function, called an inline function. A compiler can take a single
function and divide it into multiple logical units within the binary,
not necessarily contiguous in memory. A compiler can create multi-
ple entry points to a function, merge functions or delete functions.
For optimization purposes, a compiler does not need to use the
call instruction to call a function, but can use a jump to directly
transfer control. In addition to function organization, a compiler
can manage parameter passing using one of many different calling
conventions, passing arguments on the main stack, using regis-
ters, or even a shadow stack. If the binary uses the stack to pass
arguments, it may push them onto the stack as needed, or allocate
sufficient stack space at the beginning of the function. Most compil-
ers will store the generated function boundaries in a symbol table,
but that table may be stripped from the binary. These variations
make automatic function detection in stripped binaries a difficult
task that has been studied using basic heuristics[17], graph theory
[3], machine learning [6] and neural networks [14].

This paper introduces a publicly available function detection
algorithm that takes stripped binaries and returns a list of possible
function boundary locations. This algorithm is implemented as part
of the Jima tool suite, developed for the CGC for binary vulnera-
bility analysis and repair. We use the same datasets used in prior
research [3, 6, 14] to demonstrate that our technique performs well,
without the need for extensive machine learning or neural network
training. We also evaluate our tools and some related tools against
the SPEC CPU 2017 test suite and the Chrome browser. Our results
demonstrate that an algorithmic approach, augmented with a few
heuristics, can accurately detect function boundaries. This makes
this algorithm an enabling technology in support of automated
security analysis tools, and vulnerability mitigation technologies
such as control-flow integrity [1, 17].

In the remainder of this paper, Section 2 introduces the prob-
lem definition and related work. Section 3 introduces the function
detection algorithm used by Jima along with some examples for ex-
planation. The evaluation of the algorithm is provided in Section 4.
A summary of the experimental results is provided in Section 5.
An interpretation of the results is provided in Section 6. This pa-
per concludes with an Appendix that provides more details about
the problem definition, notation used and development of “ground
truth”.
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474 e f 0 : subq $0x8 ,% rspn
474 e f 4 : c a l l q ∗% r d i
474 e f 6 : jmpq 404204
474 e f b : jmpq 4041 f c

Listing 1: Example function, with extra jmpq at the end.1,2

2 PROBLEM DEFINITION
The problem consists of analyzing stripped binaries, those without
symbol table or debug information, to determine the list of functions
within the binary. Specifically we are looking for function starts and
function boundaries, where function starts are a part of the function
boundary, as defined by Bao et al. [6]. This definition assumes all
instructions of a function are contiguous in memory, effectively
reporting the address of the first and last instruction of a function.
For the interested reader, formal definitions of the task goals and
the terms precision, recall, F1 values and a discussion of how we
determine ground truth are provided in Appendix A.1.

2.1 Example of Discrepancy
There are several cases where the listed function addresses in an
unstripped binary, what we consider the ground truth, may not
coincide exactly with the definitions Appendix A.1. For example,
in Listing 1, the compiler includes two jump statements at the end
of a function. There is no other jump to the statement at address
0x474efb; therefore this code is unreachable and technically not
an executable instruction of the function. Its existence is probably
a compilation artifact that wasn’t detected and deleted by optimiza-
tion. Ultimately we need to determine what is the relevant ground
truth. For the purposes of this paper, ground truth is the list of
functions in the unstripped binary, as defined in Appendix A.1.

We do claim that if Jima was perfect for function start detection,
then these discrepancies are not much of an issue, since we could
just define ground truth as just the function starts. To be consistent
with prior publications, we decided to follow their lead and report
both function starts and function boundaries.

2.2 Related Work
There has been prior work related to function identification in
binaries. The recent results summarized here are by Bao et al. [5, 6],
Shin et al. [14], and Andriesse et al [3].

2.3 Machine Learning
Bao et al. [6] utilize machine learning techniques to automatically
detect function starts and function boundaries. Startingwith ground
truth, they train their machine learning algorithm, generating spe-
cific signatures for each file in the dataset, and analyzed using a
10-fold evaluation. They have made a VM available with their code
and datasets [5], which allows researchers to duplicate their results
(as long as you add a new virtual drive with over 500GB of disk
space for temporary data storage), and to see how they calculated
the comparisons. The reported runtime for the full dataset is over
500 hours. We noticed that the test scripts execute 10 versions of
the test program in parallel, and therefore may run more efficiently
on a machine, and VM, with several CPUs. Given the training data,
the actual function start and boundary detection algorithms run

faster, with function start taking about 1-2 hours for a 1024 binary
dataset and over 100 hours for full function boundary detection.
This was an improvement in correctness and efficiency over prior
work [13]. Some of the results from this work were then incorpo-
rated into the Binary Analysis Platform (BAP) [7], avoiding the
need for additional training. We compare the results of Jima with
their published results, and BAP in Section 4

2.4 Neural Networks
Shin et al. [14] use a recurrent neural network for their training
and function detection algorithms. Unfortunately, they did not
provide access to their code. They also used the Bao et al. datasets
to evaluate the effectiveness of their results, and compared them
directly with Bao et al. published results. Their algorithm improved
on the results presented by Bao et al. and is reported to only require
a little over 80 hours of training. We include their published results
in direct comparison with ours in Section 4.

2.5 Algorithmic
In 2017, Andriesse et al [3] introducedNucleus, a “compiler-agnostic”
function detection algorithm for binaries. They use linear disassem-
bly coupled with in-line data and padding code detection followed
by basic block detection. These blocks are then connected into con-
trol flow graphs. Based on the premise that intraprocedural control
flow instructions tend to be different than interprocedural instruc-
tions, they isolate subgraphs of basic blocks for each function. The
function detection code of Nucleus is publicly available [12] and
therefore was used in our comparisons.

2.6 Other Tools
In 2019, the National Security Agency released Ghidra, a reverse
engineering toolkit that includes automated function boundary
detection.. We have not seen a published report of how their tool
conducts function boundary detection. As a publicly available tool,
we have also included a comparison with Ghidra [2]. We also at-
tempted comparison with IDA Free [11] and BAP [7], both publicly
available tools.

3 METHODS
The Jima function detection algorithm, as outlined in Listing 2, is
implemented in several phases. Each phase requires either a full or
partial pass over the code, or its intermediate representation. The
phases of the Jima analysis are summarized here, and described in
more detail in subsequent subsections:

(1) Disassembly. In this phase, Jima uses objdump (a linear dis-
assembler) to generate a listing of assembly instructions.
These are then parsed and stored in the Jil data structure, a
custom data structure designed to store an abstract repre-
sentation of the binary and the program (see Section 4.3 for
further discussion). During parsing, Jima records all control
flow operations (i.e., call, jump, ret) along with their
target addresses, if explicit in the instruction. Other infor-
mation about the binary is also collected, including memory

1From xgcc in gcc 8.2.0, default 64-bit compilation.
2This code is listed in AT&T format, for 64-bit Intel assembly, which lists the target
register/address as the last operand of the instruction.



L in e a r Di sa s semb ly
De t e c t Ca l l s , C a l l Ta rge t s , Re tu rns
De t e c t Jumps , Jump Ta rg e t s
De t e c t Embedded da t a s e c t i o n s

Analyze Excep t i on Handler Tab l e s
Analyze Table −based Jump P t r s

f u n c t i o n L i s t = c a l l T a r g e t s
p r o c e s s F u n c t i o n L i s t ( )

r e p e a t :
p r o c e s sTe rm ina lCa l lCha i n ( )
f u n c t i o n L i s t = m i s s i n g F un c t i o n L i s t
m i s s i n g F un c t i o n L i s t = emptyL i s t

u n t i l f u n c t i o n L i s t . empty ( )

where p r o c e s s F u n c t i o n L i s t ( ) i s :
wh i l e not f u n c t i o n L i s t . empty ( ) :

addr = f u n c t i o n L i s t . pop ( )
p r o c e s s Fun c t i o n ( addr )
i f f u n c t i o n L i s t . empty ( ) :

f u n c t i o n L i s t = m i s s i n g F un c t i o n L i s t
m i s s i n g F un c t i o n L i s t = emptyL i s t

where p r o c e s s Fun c t i o n ( addr ) i s :
maxAddr = nex t i n f l e c t i o nO u t
done = F a l s e
whi l e not done :

addr = n e x t I n f l e c t i o nOu t
i f i s _ j umpTab l e _po i n t e r ( addr ) :

update maxAddr
e l i f i s _ c a l l _ t o _ a _ t e rm i n a l ( addr ) :

maxAddr = n e x t I n f l e c t i o nOu t
e l s e :

app ly h e u r i s t i c s
i f addr == maxAddr :

done = True
i f gap e x i s t s :

add gap to m i s s i n g F un c t i o n L i s t

where p r o c e s sTe rm ina lCa l lCha i n ( ) i s :
f o r each non− t e rm i n a l f u n c t i o n :

i f c a l l s t e rm i n a l on a l l pa th s :
s e t f u n c t i o n as t e rm i n a l
add c a l l e e s to m i s s i n g F un c t i o n L i s t
remove c a l l e e s from known f u n c t i o n s

Listing 2: Jima Function Detection Algorithm

ranges of code and data, explicit references to code and data
addresses, and information about dynamic libraries.

(2) Exception Handler Analysis. In this phase, Jima uses data
in the exception handler tables to map exception handling
code to the parent function, as discussed in Section 3.2.

(3) Jump Pointer Analysis. In this phase, Jima iterates through
all jump pointer operations, attempting to detect the loca-
tion and size of the related jump tables, or jump addresses,
discussed in Section 3.3.

(4) Function Detection. In this phase, Jima iterates through all
detected call destinations and scans the code forward from
the call destination through subsequent inflection points (see
Section 3.4) until all paths terminate the function or the next
call destination is reached.

(5) Missing Function Detection. During previous function detec-
tion phases, Jima looks for the existence of executable code
in the gaps between detected functions. This phase performs
function detection on all possible missing functions, and
repeats until no new possible missing functions are found,
discussed in Section 3.5.

(6) Terminal Function Call Chain Detection. Any function that
does not return from execution, such as the abort function,
is a terminal function. Software often wraps calls to terminal
functions with one or more layers of additional functions,
which may implicitly be terminal functions. A call to a termi-
nal function does not return, and therefore the instruction
after the call may not be part of the same function as the
call. The Jima function detection algorithm detects these
implicit terminal functions as part of its analysis, discussed
in Section 3.6.

3.1 Detection of Explicit Calls and Jumps
During disassembly, Jil categorizes each instruction. If the instruc-
tion is an explicit call or jump (has a hardcoded address), it records
the source and target addresses as well as the reverse in lists for
’CALLS’, ’JUMPS’, ’CALLED_BY’ and ’JUMPED_BY’. It also records
returns. Initially all calls and jumps are a mapping from the source
address to a single target address. However, with jump pointers
and call pointers, the targets may be one of a list of addresses. The
’CALLED_BY’ and ’JUMPED_BY’ lists map the target address to a
list of source addresses. These lists are used by Jima when detecting
function starts and function boundaries.

Note that in Intel 32-bit position independent code, a compiler
can generate a call to the next instruction, which then pops the
value into a register, obtaining the current instruction counter.
Jima detects this behavior and does not include these calls in the
preceding list of calls. Intel 64-bit code has a separate instruction
pointer register, and does not need to use this trick.

3.2 Exception Handler Analysis
ELF data files contain two exception handling sections, eh_frame
and eh_frame_hdr, which contain information about the exception
handlers. The details of these exception handling sections is be-
yond the scope of this paper, but it is sufficient to say that they
contain tables that map regions of instructions to specific exception
handlers. When an exception occurs, the tables are searched to
find the region containing the current instruction pointer address,
and to get the appropriate handler (and possible pre-processing
code). The compilers analyzed here (i.e., gcc, icc, clang) append
the exception handlers to their parent functions, and include them
in the size of the function. Normal control flow analysis will not
detect these handlers as part of the parent function, since they are
not normal. This is true for linear and recursive analysis and both
static and dynamic analysis (unless the dynamic analysis forces
and exception to occur). As an added heuristic, Jima decodes these



tables to correctly include the handlers within the parent function’s
boundaries. The other algorithmic tools appear to do this as well,
but not the machine learning and neural network tools.

3.3 Jump Pointer Analysis
Jump pointers exist in the code in one of three general forms:

(1) Global offset table. References to the global offset table of the
form jmpq *0x176d9f2(%rip) or jmpl *0x8114120 are used to
reference functions in shared libraries. The value stored at the refer-
enced address is initially a reference to code that calls the dynamic
loader to determine the actual start address of the function in the
dynamically loaded library, which is then stored at the referenced
location for future use. These tables are stored in the .plt (proce-
dure linkage table) section of the file and Jima does not consider
them as possible function starting points.

(2) Jump table values. Compilers will often use jump tables to
store entry points for different branches of a switch statement. The
expression is calculated and used to generate an offset into the jump
table. The value stored in the jump table is either the specific start
address of the relevant case statement (see Section 3.3.1), or with
position independent code (see Section 3.3.2) is used to calculate
the start address of the selected case statement.

(3) Other. We have seen other uses of jump pointers, specifically
references into a table of functions. This has been used to jump to a
called function, where the call is the last statement executed by the
current function. This allows the compiler to optimize a sequence
of nested calls with a single return to the initial caller. There may
be other uses as well.

3.3.1 Use of Jump Tables. Without the existence of jump point-
ers, function boundary detection would be a much easier problem.
Consider the code in Listing 3 which is part of a switch statement.

• Prior to this code, the program evaluates the expression
used by the switch statement, and the result is stored in the
memory location pointed to by the value in register %rdx.

• The instruction at address 0x417021 compares this expres-
sion value with 0xb.

• If the value is greater than 11 (0xb), the instruction at location
0x417024 jumps to the default case, or end, of the switch
statement. In this case the switch is the last instruction nested
in a loop, so the jump is backwards in the code, and not
helpful in determining a possible upper bound of the jump
targets.

• The expression value is copied into the lower 32 bits of
register %r10d by the instruction at 0x41702a3.

• The instruction at address 0x41702d looks up a jump tar-
get address in the table starting at address 0x495040 (see
Table 1). The lookup will be indexed by the value in register
%r10, multiplied by 8, to step through the 8-byte addresses
that represent the memory addresses of the start of the cor-
responding case statements.

364-bit Intel uses the ’d’ suffix to indicate the lower 32bits of 64-bit registers that do
not have a backward compatible 32-bit register name. In addition, a move to the lower
32 bits will automatically zero out the upper 32-bits.

Table 1: Jump Table reference from Listing 3.

Offset Bytes in Memory Jump Address
0x495040 54 35 40 00 00 00 00 00 0x403554
0x495048 44 70 41 00 00 00 00 00 0x417044
0x495050 a8 70 41 00 00 00 00 00 0x4170a8
0x495058 b0 70 41 00 00 00 00 00 0x4170b0

. . .

4 1 7 0 2 1 : cmpl $0xb , ( % rdx )
4 1 7 0 2 4 : j a 403554
41702 a : movl (% rdx ) ,% r10d
41702 d : jmpq ∗0 x495040 ( ,% r10 , 8 )

Listing 3: Jump pointer for switch statement2.

Table 2: Position Independent Jump Table reference from
Listing 4. Final address calculated by adding the value in the
table to 0x4e54a8 (5133480).

Offset Bytes in Memory Hex Value Jump Address
0x4e54a8 78 fb f8 ff 0xfff8fb78 0x475020
0x4e54ac d0 fb f8 ff 0xfff8fbd0 0x475078
0x4e54b0 f8 fb f8 ff 0xfff8fbf8 0x4750a0
0x4e54b4 08 fc f8 ff 0xfff8fc08 0x4750b0

. . .

3.3.2 Position Independent Jump Table. In Intel 64 bit code, we can
use the %rip register to generate position independent offsets. The
code in Listing 4 and jump table in Table 2 use this technique to
reference the start of the jump table and the jump addresses.

• The instructions at addresses 0x474fff - 0x475005 set and
check the jump table index, currently in %cl, making sure it
is in the range 0 to 12, and again, jumping backward in the
code, still preventing easy calculation of an upper bound on
the jump targets.

• The start of the jump table is loaded into %r8 at instruction
0x47500b. That address is calculated by adding the offset
(0x70496) to the current instruction pointer, %rip which
contains the address of the next instruction (0x475012).

• The value in %cl is copied to %ecx, zeroing out all of the
highbits.4

• Line 0x475015 loads the position independent offset for the
jump address into %rax. This is a negative value.

• Line 0x475019 adds that value to the table start address in
%r8, storing the result in %rax, to be used by the jump at
address 0x47501c.

3.3.3 Jump Table Analysis. To analyze a jump table, Jima starts at
the address of the jump pointer and symbolically stores the index
register, or other registers, used to calculate the jump. Jima then
works backwards through the code, looking for a place where those
target registers are set, or at least bounded by a comparison. In the

4This includes the high 32 bits in the %rcx register. In Intel 64-bit mode, moving a
value into a 32-bit register always zero’s out the high 32 bits of the corresponding
64-bit register.



474 f f f : and l $0xf ,% ecx
4 7 5 0 0 2 : cmpb $0xc ,% c l
4 7 5 0 0 5 : j a 404209
47500 b : l e a q 0 x70496 (% r i p ) ,% r8
# The leal instruction puts 0x4e54a8 into %r8. This is
# offset (0x70496) + %rip (0x475012, which
# is the address of the next instruction.)
4 7 5 0 1 2 : movzbl %c l ,% ecx
4 7 5 0 1 5 : movslq (% r8 ,% rcx , 4 ) , % rax
4 7 5 0 1 9 : addq %r8 ,% rax
47501 c : jmpq ∗% rax
47501 e : xchg %ax ,% ax
4 7 5 0 2 0 : mov (% rdx ) ,% r8 # jmp loc 0
4 7 5 0 2 3 : l e a 0 x8 (% rdx ) ,% rax
. . .
4 7 5 0 7 2 : r e t q
4 7 5 0 7 3 : nopl 0 x0 (% rax ,% rax , 1 )
4 7 5 0 7 8 : movq %rdx ,% rax # jmp loc 1
47507 b : x o r l %r8d ,% r8d

Listing 4: Example jump pointer usage with position inde-
pendent code1,2

code of Listing 4, Jimawill start looking for a bound on register %r10.
It will detect the movl instruction and replace the current register
of interest with (%rdx). Jima will next detect the jump above (ja)
instruction and note that it was traversing the path where this
conditional jump failed. Finally Jima will detect the comparison
instruction that set the condition code for the conditional jump.

Once Jima has detected the sequence of instructions that can
set the bounds of the jump table, it performs a simple symbolic
execution of the code starting from the comparison instruction,
cmpl. To avoid state explosion problems, Jima stores bounds of
values (low and high) for large ranges, and a list of exact values for
small ranges (less than 512 values).

• Here Jima records that there was a comparison, and because
the jump pointer of interest is on the path where the condi-
tional jump failed, Jima knows that the value in (%rdx) is
in the range 0-10 (since ja is an unsigned comparison, we
know both the upper and lower bounds)

• Jima places these values in a list of possible values for (%rdx).
• Jima then continues and copies that list to %r10d.
• When Jima reaches the jump pointer, it generates a list of
all possible jump table addresses, and dereferences these to
get a list of possible jump target addresses. These addresses
are then added to the list of jump targets for the source
address, and are added to list of jumped_by addresses. These
addresses are used in the function detection algorithm as it
walks through instructions seeking the last instruction of
the function.

3.3.4 Other Aspects of Jump Table Detection. Code is not always
executed in a linear fashion, therefore Jima is aware of jumps to code
(from the JUMPED_BY list) and will skip back to the jump source
if needed. The index register is not always set with a comparison
function, but sometimes bounded using logical and, or a logical
shift. In these cases, the register is often set to a limit of a small
number of addresses, such as 7, 8, 15, or 16. Sometimes the address

into the table is calculated separately and stored in a register which
is the operand for the indirect jump. Jima handles all of these cases
and a few others. To limit the backward analysis, Jima will stop
analysis if it finds the start of the function, finds an instruction
that is the target of multiple jumps, or evaluates more than 50
previous instructions without resolution. In this case Jima failed
function pointer analysis – it is either not a jump pointer for a
switch statement, or the code was just too complex.

3.4 Function Detection
The main function detection process of Jima (see Listing 2) starts
with a sorted list of possible function addresses. Initially these are
call target found during linear disassembly. Jima then used this
list, setting the first address as a possible function start address,
and the next one as the next function address. The algorithm then
processes instructions from the start address until it reaches the
next function address, or reaches a function exit point. There are
several key concepts that assist in the function detection process,
which are:

• Inflection Points. Inflection points are locations where
there is a potential for non-linear control flow, and are bound-
aries for basic blocks. An inflection-out is an instruction that
leaves the current sequential instruction flow such as a jump,
return, or a call to a terminal function. An inflection-in is an
instruction that is the target of a call or jump. These inflec-
tion points are usually the bounds of basic blocks discussed
in compiler and reverse engineering literature.

• Jump tables. A jump pointer can use a jump table to select
one of several possible jump targets. Jima assumes all jump
targets are within the bounds of the current function.

• Terminal Functions.A call to a terminal function ismarked
as an inflection-out that does not return.

The Jima function detection algorithm processes function code
using inflection-out points. Jima sets the max function address as
the next inflection-out and then iterates through the inflection-
out points until it finds a terminating case. If the inflection-out
point is a jump pointer for a discovered jump table, the algorithm
assumes that the target addresses are within the current function,
and sets the max address to the maximum of the jump targets
and the current max address. If the inflection-out is a call to a
non-terminal function the algorithm processes a few heuristics
to determine if the subsequent code is still part of the function,
and if it is, the max address is set to the max of the current max
address and the next inflection-out point. These heuristics include
the following.

• Embedded data belongs to the preceding function.
• After disassembly, Jima scans all targets of calls. If over 90%
of them are aligned to a specific byte boundary, Jima takes
that into account when determining if the next instruction
(and corresponding basic-block) is still part of the existing
function or a new function.

• If the last detected instruction is followed by a jump over
a sequence of NOPs, that is assumed to be the end of the
function. In addition, if the instruction is followed by several
NOPs then Jima assumes it is at the end of the function.



• All exception handling code marked for instructions in the
current function, belong to the current function.

3.5 Missing Function Detection
After the end of the function, if there is a gap to the next known
function start, then the next executable address is stored in a list
of possible missing functions. After the current list of function
starts is completed, Jima restarts the process with the list of missing
functions, until there are no more possible missing functions.

3.6 Terminal Function Detection
The Jima function detection algorithm currently starts by assuming
the following list of glib functions are terminal (non-returning)
functions: abort, exit, Exit, errx, err, __assert_fail,
_exit and __stack_check_fail5. The algorithm looks at each
caller of terminal functions. Each calling function start address is
added to the list of possible missing functions, and is removed from
the list of previously functions. Subsequent reanalysis of this func-
tion may now change the detected function boundaries due to the
call to the newly recognized terminal function; possibly resulting
in new terminal functions and additional missing functions. This
process is repeated until no new terminal functions are found.

4 METHODS
This section summarizes the experimental set up for the empirical
results obtained when evaluating Jima with respect to other work.
We ran our experiments on an Intel(R) Core(TM) i7-5820K CPU
running at 3.30GHz. This processor has 12 logical cores and 32GB of
RAM. The machine was running Ubuntu 18.04 LTS. The evaluated
Jima code was written in Python3.

4.1 Datasets
To compare our work with prior work, we use three datasets. Sta-
tistics for these datasets is provided in Tables 3 & 4.

Unix Utilities. The first dataset comes from Bao et al. [6]; which
was also used by Shin et al. [14], Andriesse et al. [3] and Di Federico
et al. [10]. This dataset consists of 2064 Linux binaries derived from
129 unique programs (see Table 3). Bao et al. built this dataset from
the 129 programs from the binutils (16 programs), coreutils (104
programs) and findutils (9 programs) packages. Each program was
compiled using four different optimization levels (levels O0 through
O3) using three different compilers, gcc, Intel icc, and clang6 into
both 32-bit and 64-bit executables. The dataset and documentation
were made available on-line by Bao et al. [5].

These tools are relatively small, do not contain exception han-
dlers, and do have shared code within the tool suites. Due to this,
we have concerns about the generalizability of the results that were
also raised by Andriesse et al. [3]. To summarize, the tool suites
have shared code basis, and the tools are small. Also, for the ma-
chine learning experiments [6], variants of each utility (compiled
under different compiler or with different optimization option) were

5Future plans will enable us to evaluate dynamically loaded libraries to automatically
detect terminal library routines, starting with knowledge of terminal system calls, and
then build up from there.
6We extended this data set by compiling the programs with clang compiler.

in the training set. However, since this dataset has been used by
several prior authors, [3, 6, 10, 14], we include it for completeness.

SPEC CPU 2017. The second dataset utilizes the SPEC CPU 2017
[9] benchmarks. This data set consists of a range of different pro-
grams built using C, C++ and Fortran. We used the INTSPEED,
INTRATE, FPSPEED and FPRATE benchmarks. We removed dupli-
cates binaries that were named differently for performance bench-
marking purposes. This resulted in 28 benchmarks that compiled
for 32-bit executables and 32 benchmarks that compiled for 64-bit
executables. We built these with the four optimization options (level
O0 to O3) using the gcc, clang and icc compilers. For both gcc and
clang datasets we used the gfortran compiler, and for icc we used
the ifort compiler. We had to set the -fPIC flag to build several of the
binaries. The -fPIC flag forces the compiler to generate position in-
dependent code. Therefore this dataset evaluates tool performance
on position independent code, Fortran code and exception handling.
Note that some benchmarks did not compile for all options. We felt
there was sufficient diversity in the dataset that we did not correct
for this.

Chrome Browser. The final dataset is actually just one program,
the Chrome browser, built with the default options. This generated
a 99 MB file that contains over 353,000 unique functions. An ex-
amination of the symbol table showed many function names for
the same address; all duplicates were removed in calculation of the
ground truth in the work presented here.

4.2 Ground Truth
Ground truth for each of the binaries was determined by examin-
ing the symbol table within the unstripped version of the binary,
looking for function entries in the ’.text’ section. There are a few
nuances related to the use of ground truth data when comparing
our results with that of other techniques, these are detailed in the
Appendix A.2. This definition of ground truth for function starts
and function boundaries assumes that all bytes of a function are
stored consecutively in the binary, and that there is no code shared
between functions.

4.3 Implementation
The Jima tool suite is written in Python3. Although the use of
Python may limit performance, it also enables collaboration, porta-
bility and extensibility. The Jima binary analysis and repair activi-
ties center around the Jil data format, a custom data structure that
maintains information about the contents of a binary. The Jima tool
suite includes several functions and utilities to examine, evaluate
and modify the Jil data structure. For reuse, Jima stores the Jil data
structure in a pickled (compressed) file. For the purposes of this
paper, we use JLift, the Jima tool that performs first phase disas-
sembly and categorization of the binary and instructions, creating
the initial Jil data structure. We then run JilTool, which conducts
jump pointer, dynamic library, function pointer and embedded data
analysis, followed by function detection7.

To determine the efficiency of our results, we generate a ground
truth file, as discussed in Section 4.2.We then ran the Jima, Ghidra [2]

7We have posted our work as an ACSAC artifact, and also on GitHub at https://github.
com/CenterForSecureAndDependableSystems/FunctionBoundary.

https://github.com/CenterForSecureAndDependableSystems/FunctionBoundary
https://github.com/CenterForSecureAndDependableSystems/FunctionBoundary


Table 3: Characteristics of Unix utility datasets

Unix Tools
ELF x86 ELF x86-64

clang gcc icc clang gcc icc
Number of Binaries 508 516 516 508 516 516
Number of Functions 172,131 145,279 164,139 170,932 146,153 154,204

Avg. Number of Functions 339 281 318 336 283 299
Size of Stripped Binaries (MB) 101 84 102 110 87 128

Table 4: Characteristics of Other datasets

SPEC CPU 2017 Chrome
ELF x86 ELF x86-64 ELF x86-64

clang gcc icc clang gcc icc clang
Number of Binaries 108 112 110 123 128 128 1
Number of Functions 461,102 564,927 672,483 527,702 645,893 735,507 353,301

Avg. Number of Functions 4,272 5,044 6,113 4,290 5,046 5,726 353,301
Size of Stripped Binaries (MB) 411 394 509 1,087 1,316 1,012 99

and Nucleus [12] against each of the datasets. We also ran IDA Free
7.0 [11], and BAP 1.50 [7] against some of the datasets. Other results
are taken from those self-reported by the authors of the tools.

5 SUMMARY OF RESULTS
5.1 Unix Utilities DataSet
A direct comparison of Jima function detection algorithm, Nu-
cleus [3, 12] and Ghidra [2] to the published results of Bao et al.
[6] and Shin et al. [14] is presented in Table 5. We show average
percentages of precision, recall and F1 over specific datasets, to be
consistent with the format or results shown in prior work [3, 6, 14].
Although a useful first pass, this does not provide a detailed compar-
ison as we discuss in Section 6. We do not break down our results
by optimization level, since we found limited use of that data in all
but the icc compiler (see Section 5.3).

For the most direct comparison, we ran our experiments for
Ghidra, Nucleus and Jima on all of the reported datasets, BAP and
IDA Free on a limited subset due to some execution issues. We also
used the same gcc and icc compiled datasets provided by Bao et
al. [5]. We report the results from Bao et al. and Shin et al. prior
work as reported by the authors.

For function start detection, Jima performs slightly better than
the prior work. For function boundary detection, Jima results are
several percentage points above prior work, especially in 64-bit
mode, and on average is better than Ghidra or Nucleus. We present
these results with a few caveats:

• Bao et al. [6] consider a function boundary to be a match if
the detected end is not beyond the real end, therefore a short
function is a match. We do not know how Shin et al. [14]
calculated matches. The compilers, especially icc, sometimes
include padding NOPs in the function length, which probably
explains the approach used by Bao et al. For the experiments
we ran, we used an exact match to define success.

• Shin and Byteweight tools were developed with evaluation
on only two compilers, and we were not able to rerun, so we
use their reported values.

• IDA Free does not have a scripting capability that we could
use, unlike Ida Pro, so we manually ran a limited set of tests
to see if the tool’s results were comparable.

• BAP took a very long time to run on some of the data sets, and
had difficulty on some of the tests. Also, it tended to return
all possible bytes in a function, resulting in overlapping
function boundaries.

As can be seen by these results, Jima performs consistently across
all types of files, with slightly worse performance for icc. When
combined together, the results are very encouraging and led to the
writing of this paper.

5.2 Other DataSets
In addition to the Unix Tools dataset of Bao et al., we used SPEC
CPU 2017 and Chrome8 to test more complex and larger code,
including position independent code and exception handling. The
F1 function start and function boundary results are summarized in
Table 7 for IDA 7.0 free, Nucleus, Ghidra 9.0.1. and Jima for each
compiler and architecture. We only ran IDA Free on the gcc version
due to difficulty in obtaining the data, and the fact that the results
were much worse than Jima. For some of the datasets BAP required
too much memory and either crashed or took too long to complete.

As can be seen from the results in Tables 5- 7, Jima consistently
performed better than IDA and Nucleus on the Unix utilities and
SPEC datasets. Jima also performed well on Chrome.

5.3 Intel icc
The icc benchmarks were a bit disappointing, and require further
explanation. We wondered if low numbers were a byproduct of
optimization level, or possibly numbers of functions. Some of the

8Chrome was compiled using the default compilation options using clang compiler in
64-bit mode.



Table 5: Summary of Function Start/Function Boundary identification results compared with previous work, Byteweight* and
Shin* are self-reported values for gcc and icc; Nucleus, Ghidra and Jima are averaged across all 3 compilers. Jima improvement
is compared to best of other tools.

UNIX Utilities Data Set % Precision, Recall and F1
ELF x86 ELF x86-64

Precision Recall F1 Precision Recall F1
Byteweight* 98.41/92.78 97.94/92.29 98.17/92.53 99.14/93.22 98.47/95.52 98.80/92.87
Ghidra 9.0.1 100.00/97.35 65.72/64.68 75.31/73.88 99.98/98.44 97.94/96.46 98.94/97.43
Nucleus 0.65 91.20/95.58 93.18/89.40 91.94/92.24 97.68/97.33 93.79/91.40 95.59/94.16
Shin* et al. 99.56/97.75 99.06/95.34 99.31/96.53 98.80/94.85 97.80/89.91 98.30/92.32

Jima 99.21/97.93 99.46/98.19 99.33/98.05 99.81/99.30 99.38/98.86 99.59/99.07
Jima % Improvement -0.79/-0.43 0.40/2.85 0.02/1.02 -0.11/0.86 0.91/2.40 0.65/1.64

Table 6: Summary of average Function Start/Function Boundary detection F1 values for all optimization levels by compiler
for the Unix utilities dataset. Jima improvement is compared to best of previous 3 tools. Byteweight* and Shin* data are self-
reported values included for reference.

UNIX Utilities Data Set % F1
ELF x86 ELF x86-64

clang gcc icc clang gcc icc
BAP 1.5.0 64.09/30.91 97.28/80.42 N/A 56.80/38.02 90.49/71.38 83.63/68.67

Ghidra 9.0.1 69.98/68.79 99.26/99.14 56.60/53.63 99.30/98.51 99.36/99.22 98.14/94.50
Nucleus 0.65 97.15/96.29 96.31/97.36 82.44/83.13 85.11/95.57 92.52/88.63 85.63/91.85

Jima 99.96/99.90 99.78/99.36 99.96/99.90 99.88/99.76 99.96/99.87 98.93/97.60
Jima % Improvement 2.81/3.61 0.52/0.22 17.55/16.77 0.58/1.25 0.60/0.65 1.79/3.10

Byteweight* 98.17/92.53 98.80/92.87
Shin* et al. 99.31/96.53 98.30/92.31

Table 7: Summary of average Function Start/Function Boundary detection F1 values for all optimization levels by compiler
for the SPEC 2017 CPU dataset, and Chrome. Jima improvement is compared to best of other tools. IDA was only tested on the
gcc compiled version and is included for reference, BAP failed to complete for these.

SPEC CPU 2017 % F1 Chrome % F1
ELF x86 ELF x86-64 ELF x86-64

clang gcc icc clang gcc icc clang
IDA 7.0 (Free) 1.5.0 82.42/75.57 80.59/74.69 88.67/82.63

Ghidra 9.0.1 88.39/80.33 99.16/96.58 48.39/42.54 97.30/92.43 99.18/96.28 83.61/68.87 99.97/99.51
Nucleus 0.65 74.94/35.42 72.26/34.16 72.67/64.74 91.93/87.50 97.61/95.55 65.71/63.00 95.01/52.92

Jima 98.72/98.46 99.80/99.21 97.59/88.27 99.94/99.90 99.99/99.98 99.27/92.54 99.04/97.25
Jima % Improvement 10.33/18.13 0.64/2.63 24.92/23.53 2.64/7.47 0.81/3.70 15.66/23.37 -0.93/-2.26

binaries had low numbers of functions, so a small number of errors
could result in a relatively large percentage decrease. We therefore
plotted the F1 values for all of the icc compiled binaries for Jima in
Figures 1 and 2. These values are sorted by optimization level and
then by the number of functions9. There are some obvious artifacts
in the results for O2 and O3 optimizations. We can see a slope
up as percentages improve as the number of functions increases,
which shows that a few errors in function detection can affect the
overall results. The existence of two distinct slopes in these regions

9These graphs were created to highlight the differences, therefore the y-axis scale
starts around the minimum value.

is due to the nature of the data sets. The lower slope is primarily the
coreutils dataset, and due to some common functions among those
utilities were compiled in a way that Jima analyzed incorrectly.
The scattered lower values, specifically in Figure 2 are due to some
binaries in the SPEC CPU dataset. Jima did not accurately detect the
end of the functions, creating shorter functions compared to ground
truth, and also creating some extra false positives. This is mostly
due to NOPs padding the end of some functions, but counted by the
icc compiler as part of the function, but not counted by Jima. We
decided to not correct for this when reporting results here, because
we could not find evidence that prior art ignored these NOPs, and
still gives us a lower bound on correctness.
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Figure 1: Jima F1 Start values for icc compiled binaries
sorted by optimization level and number of functions.
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Figure 2: Jima F1 Boundary values for icc compiled binaries
sorted by optimization level and number of functions.

Table 8: Execution Time and Space for Analysis of Chrome

Tool Run Time (sec) Max Mem (GB)
Nucleus 245.36 10,980
Jima 666.46 27,510
Ghidra 6,066.59 2,512

5.4 Computation Time and Space
The most accurate and time efficient tools appear to be Ghidra,
Nucleus and Jima, and therefore we compared their performance
on Chrome. We wanted to know how well they perform on a 99MB
executable with a large number of functions. The results are shown
in Table 8. Nucleus [12] runs quite efficiently and with some control
for memory overhead; the posted code being specifically used for
just function boundary detection. Ghidra runs slower but much
more beneficially in terms of RAM usage, and performs a range of
analysis – although we tried to limit the analysis for our experi-
ments to limit it to function boundary detection. Not included on
this table: IDA Free ran twice as slow as Jima, and BAP ran much
slower and took more memory – crashing on analysis of Chrome.

In a review of the performance of Jima, we found that the major-
ity of time is taken in disassembly and pre-processing. Since Jima
uses objdump, there is additional overhead in reading the textual
output and converting it into the Jil internal representation. A direct
integration of a disassembler would greatly speed up this part of
the program, and is slated for future work.

6 DISCUSSION
6.1 Averages vs. Details
The results summarized in Tables 6 and 7 are averages over many
different test programs, but miss details such as that seen in Fig-
ures 1 and 2. For example, if we look at the x86 gcc data for Unix
utilities, Jima compares favorably to Ghidra (Table 6). However,
when we plot the difference in F1 function boundary values for
each executable, we can see details that averages miss (see Figure 3).
In this figure, binaries are sorted by utility group (binutils, coreutils,
findutils), then by optimization levels O0-O3 and then alphabeti-
cally by tool name. This grouping shows that Jima does worse on
function boundary detection on some of the binaries, specifically
those compiled with coreutils O2 and O3 optimizations, or findu-
tils when compared to Ghidra. However, for some cases Jima does
significantly better than Ghidra. When plotted this way, we see
that the results are quite mixed and that there are some trade-offs
between approaches, indicating a need for further investigation.

To get a better feel for the overall results, instead of just relying
on averages, we calculated the number of binaries where the F1
values for function start or function boundary detection were better,
equal or worse for Jima with respect to Ghidra (Table 9) and Nucleus
(Table 10). Here it is much more apparent that Jima provides better
results in almost all cases except with function boundaries in gcc
compared to Ghidra.

6.2 Error Analysis
There are several things that limit the effectiveness of our approach,
some of which are discrepancies with ground truth. There are
times our algorithm correctly finds all executable instructions of a
function, but the listing in the unstripped binary includes additional
instructions or padding NOPS. In addition there are limitations to
our algorithm. The first is the incompleteness of the jump table
detection process. Although our heuristics are pretty accurate, they
are not able to calculate all possible values of jump table pointers.
Second is the use of jump pointers that are not part of a jump table,
and call pointers, that may not be accurately detected. Third is the
use of call pointers and tables of function addresses, Jima does not
address these at all.

6.3 Algorithmic Comparison to Prior Art
In the previous sections we have discussed how our algorithm
works, and compared our results to that of prior art. Naturally, this
is the part of the paper where we explain why it works better than
prior art. That may be harder to do than it appears on the outset.

The machine learning [6] and neural network [14] approaches
are based on automated learning of patterns in the code. These
techniques both require a large amount of training, and extensive,
representative datasets. However, they attempt to learn to match



Figure 3: Jima improvement over Ghidra, comparison of F1 function boundary for Unix dataset, sorted by utility group, then
optimization level.

Table 9: Count of Binaries for Jima Improvement/Equal/Loss over Ghidra for F1 Metric of Function Starts and Boundaries by
Compiler for x86 and x86-64 Unix Utilities and SPEC CPU 2017

Jima vs Ghidra
gcc icc clang

Start Bound. Start Bound. Start Bound.
# Binaries where Jima F1 is Higher 1,116 944 1,269 1,266 1,228 1,245
# Binaries where Jima F1 is Equal 156 21 0 0 10 0
# Binaries where Jima F1 is Lower 0 306 1 4 9 2
Jima’s Average F1 Score Improvement 0.5% 0.8% 23.36% 24.62% 13.65% 15.57%

Table 10: Count of Binaries for Jima Improvement/Equal/Loss over Nucleus for F1 Metric of Function Starts and Boundaries
by Compiler for x86 and x86-64 Unix Utilities and SPEC CPU 2017

Jima vs Nucleus
gcc icc clang

Start Bound. Start Bound. Start Bound.
# Binaries where Jima F1 is Higher 1,266 1,221 1,232 1,206 1,237 1,231
# Binaries where Jima F1 is Equal 6 3 18 3 10 0
# Binaries where Jima F1 is Lower 0 48 20 61 0 16
Jima’s Average F1 Score Improvement 2.3% 3.4% 25.18% 27.92% 4.71% 10.71%

patterns of code at the end of a function. Although they are in-
dependent of the semantics of the code, this also means they can
not take advantage of those semantics. One major issue would be
in evaluation of code with exception handlers. The compilers we
investigated appended exception handlers to the end of a function,
after the normal “function termination” code; a pattern matching
technique will often miss these. As a benefit, these approaches can
handle data embedded within the instructions, since they tend to
overlook internals of functions.

Tools that focus primarily on recursive descent disassembly, such
as that used by BAP [7] and Ida-Pro [11] have two major issues. We
found with BAP, that if a compiler optimization replaced a function
call with a jump, which occurs when the call is the last instructions
of the function, the tool may assume the jump target and all of the
intermediate code is part of the same function. We have found in
BAP that sometimes the tool actually reported bytes as being part
of two different functions. The tools may also miss some function
starts or jump pointer targets. Combining the concepts of recursive



descent along with linear disassembly and some selective heuristics
gave us a better approach.

As for Nucleus [3] and Ghidra [2], they both seem to use a
more algorithmic approach to function detection. Nucleus uses a
graph-based approach to bring basic blocks of code together into
a functional unit. This worked well on gcc and clang, however,
Nucleus struggled on icc compiled data sets. We also found test
cases that Nucleus could not handle, which can be traced back to the
inability of the Capstone [8] disassembler to correctly disassemble
the code.We are unsure of the algorithmic approach used by Ghidra,
however, it seems to be optimized for gcc and struggles with clang
and icc.

When we look at the compilers, instead of the analysis algo-
rithms, we see that most tools performed well on gcc. We believe
this is due to the fact that gcc is very commonly used compiler
and therefore is the focus of much examination and research. Also,
the generated code is a bit more structured and straight-forward
compared to the other compilers. The Intel compiler, icc, gave all
tools the most difficulty, which is partially due to the inclusion of
embedded data in included library code. We also found that icc gen-
erated code for function pointer calculation was not as standardized
as in the other compilers.

Jima uses a combination of approaches to detect function bound-
aries, as described in Section 3. Jima first uses the linear disassembly
from objdump and parses that to get a list of call targets. This is used
as the initial set of functions. If the file contains exception handler
tables, Jima then gathers information from those tables, mapping
section handlers to function code, grouping it all together as a first
pass at function boundaries. Jima then takes the initial function
start addresses and performs a recursive descent on those functions,
gathering sections of code into the same function as it progresses.
If Jima encounters a jump pointer, it tries to calculate the start and
end of the jump table in memory, and the resulting jump addresses.
This approach is similar to the approach taken by Zhang and Sekar
[17], although developed independently. During analysis, Jima also
looks for calls to terminal functions. This heuristic allows the tool
to treat these calls as exist conditional for the recursive descent.
Finally, Jima detects unassigned instructions, those not mapped to
a function, as new possible instruction starts. Jima takes these new
starts and the newly detected terminal functions as feedback into
the process, and reruns the recursive descent analysis as needed.

This combination of linear disassembly and analysis, recursive
descent analysis, jump pointer and terminal function detection with
feedback allows Jima to develop a reasonable semantic model of
the control flow of the program under analysis.

7 CONCLUSION
This paper presented the function detection algorithm implemented
in Jima, a tool developed for binary vulnerability analysis and repair.
Using static analysis, and limited behavioral analysis, the algorithm
is able to consistently detect function starts and bounds better than
existing tools or prior publications. The run-time performance of
the solution is very good, allowing for quick analysis of programs.
There are still several areas of future improvement for Jima and the
function detection algorithm:

• We can improve performance by integrating disassembly
into Jima and not rely on parsing textual output from objdump.

• There are some edge cases for PIC code on jump tables that
need to be addressed. This involves improvement in the
limited symbolic execution subroutines.

• The definition of ground truth needs to be improved. We
plan to analyze binaries to look for extra function labels
inserted by the optimizing compiler, but are never called.
We also plan to look at the listed ground truth for function
length, detecting trailing NOPs or unreachable code. The
ultimate goal is to get function starts and boundaries that
can be best used for control flow integrity [1]. Functions that
are never called, and code that is never executed, should be
excluded from the set of authorized locations with a binary.

• The current tool only works on Linux ELF binaries. We plan
to port the tool to work on Windows PE binaries.
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APPENDICIES
A.1 FORMAL DEFINITIONS
We present the formal definitions of precision, recall and F1 value
for those not familiar with the terms, as well as a formalism of the
task definition.

A.1.1 Notation
When evaluating our solution compared to previously published
work [3, 6, 14] we use the following metrics: precision, recall and F1
score. Each of these is reported for both function start and function
boundary results. When Jima returns a list of function starts and
boundaries for a binary, these metrics are defined as follows:

Precision When looking at the functions reported by the vari-
ous tools, we will have correct results, true positives (tp) and
incorrect results, false positives (fp). Precision is defined as
the ratio of tp to total reported positive results:

tp

tp + f p

Recall When looking at the functions reported compared to
ground truth, we will have our correct results, tp, and the
functions that are missed, the false negatives (fn). Recall is
defined as the ratio of tp to the total correct positives:

tp

tp + f n

F1 score The F1 score is a weighted average of precision and
recall and can be used to compare the overall effectiveness
of the full solution:

2 ∗ precision ∗ recall

precision + recall

Note that precision focuses on the lack of false positives, where
recall focuses on lack of false negatives. If we report every address
as a possible function start, we will have 100% recall, but practically
0% precision. We want both numbers to be high, and this is where
the F1 score is useful, informing us of the combined effectiveness
of both precision and recall.

For analysis of binaries, there will be a correlation between these
numbers. If the tool reports too short of a function boundary, it
may then assume subsequent instructions are part of a new func-
tion. Therefore a false positive report in a function boundary can
result in a false positive in a function start report. Conversely, if
tool detects too long of a function boundary, it can accidentally
merge two functions, and now the false positive boundary report
can generate a false negative function start report. We conjecture
that if function start detection is perfect and there are no false posi-
tives and false negatives then the tool can also accurately calculate
function boundaries.

A.1.2 Task Definition
Assume the tool has access to the stripped binary code C of a
program which contains n functions, f1, . . . , fn . For each function i
we define (si , ei ) as the memory addresses of the first and last byte
in the function. As with prior work [6, 14] we define the following
tasks:

• Function start identification: Given C , find {s1, . . . , sn }, the
address of the first executable byte of all functions. This
is typically the single entry point for a function, although
some compilers and languages will allow multiple function
entry points (See Section 3.3 and Fig. 4 in Bao et al. [6] for a
discussion of this.)

• Function end identification: Given C , find {e1, . . . , en }, the
address of the last executable byte of each function.

• Function boundary identification: Given C , find

{(s1, e1), . . . , (sn, en )}

the pairing of the addresses of the first and last executable
bytes in all functions, assuming that each function is con-
tiguous in memory.

• General Function identification: Given C , find

{(b1,1,b1,2, ..b1,l1), . . . , (bn,1,bn,2, ..bn,ln )}

all bytes of all functions, not necessarily unique or contigu-
ous.

As stated by Shin et al. [14], function boundary identification
is a superset of function start and end identification, and general
function identification is a super set of all other tasks. As with
prior work [6, 14] we leave general function identification to later
work. In addition, our work solves function boundary identification
and then extracts function start (and end) information from that
analysis.

A.2 GROUND TRUTH
The following notes are intended to help clarify the analysis to
enable comparison with similar work.

Ground Truth. Ground truth is derived from an unstripped ELF
file. Using objdump and grep we generating a listing of function
starting bytes and their lengths. The result generates a listing (see
Listing 5), where the first column is the function start address and
the fifth column is function length. The following interpretations
were used when comparing our work with prior work:

(1) Zero-length functions. Some functions are listed with 0 length,
(such as the first few seen in Listing 5). These functions are
included in the analysis of function start addresses detection,
but not function boundary detection. A manual inspection of
our outputs confirmed that our tool finds the correct function
boundaries.

(2) Function aliases. Some functions have multiple names for the
same function entry point (such as the last few entries seen
in Listing 5). This is true for both icc and gcc compilers and
is an artifact of the source code. Our generation of ground
truth removed these duplicates. A review of the source code
provided by Bao et al. [5] shows that they do not remove
these duplicates and therefore count statistics for duplicate
functions more than once. Overall duplicates represent a
small percentage of the total functions, and therefore the
impact on statistics is relatively small.

(3) Function Boundaries. The icc compiler has an odd artifact
in function size, in that several functions end with a NOP
that is included in the overall function size. Jima does not
count terminal NOPs and therefore reports shorted function



t e s t@deb i an : / u s r / b in / objdump − t − f g c c _ b i n u t i l s _ 6 4 _O 4 _ s i z e | grep ' F . t e x t ' | s o r t
Function Start Addr Function Length Function Name
0000000000401 b70 g F . t e x t 0000000000000000 _ s t a r t
0000000000401 b9c l F . t e x t 0000000000000000 c a l l _ gmon_ s t a r t
0000000000401 bc0 l F . t e x t 0000000000000000 d e r e g i s t e r _ tm_ c l o n e s
0000000000401 b f 0 l F . t e x t 0000000000000000 r e g i s t e r _ tm_ c l o n e s
0000000000401 c30 l F . t e x t 0000000000000000 __do_g l o b a l _ d t o r s _ aux
0000000000401 c50 l F . t e x t 0000000000000000 frame_dummy
0000000000401 c7c l F . t e x t 0000000000000046 p t r _ a l i g n
0000000000401 cc2 l F . t e x t 000000000000010 a em i t _ a n c i l l a r y _ i n f o
0000000000401 dcc l F . t e x t 000000000000003 e em i t _ t r y _h e l p
0000000000401 e0a l F . t e x t 0000000000000062 i o _ b l k s i z e
0000000000401 e6c g F . t e x t 0000000000000105 usage
. . .
0 0000000004 cd080 g F . t e x t 000000000000000 f . h idden _ _ f s t a t
00000000004 cd080 w F . t e x t 000000000000000 f . h idden f s t a t
00000000004 cd090 g F . t e x t 0000000000000010 . h idden _ _ l s t a t
00000000004 cd090 w F . t e x t 0000000000000010 . h idden l s t a t

Listing 5: Generating Ground Truth

08082 f 4 e < f ix_syms > :
8082 f 4 e : push l % e s i
8082 f 4 f : push l %ebx
8082 f 5 0 : push l %ebp
8082 f 5 1 : movl 0 x10 (% esp ) ,% ebx
8082 f 5 5 : movzbl 0 xc (% ebx ) ,% eax
8082 f 5 9 : cmpl $0x3 ,% eax

Listing 6: ICC Compiler Optimization O1

80 b41c0 < f ix_syms > :
80 b41c0 : movl 0 x4 (% esp ) ,% eax
80 b41c4 : movl 0 x8 (% esp ) ,% edx

080 b41c8 < f i x_ syms . > :
80 b41c8 : push l % e s i
80 b41c9 : push l %ed i
80 b41ca : push l %ebx
80 b41cb : push l %ebp
80 b41cc : s u b l $0xc ,% esp
80 b41 c f : movl . s %eax ,% ebp
80 b41d1 : movl . s %edx ,% e s i
80 b41d3 : movzbl 0 xc (% ebp ) ,% eax
80 b41d7 : cmpl $0x3 ,% eax

Listing 7: ICC Compiler Optimization O2

lengths. An examination of the code by Bao et al. [5] shows
that they determined a function boundary was correct if the
calculated length was less than or equal to the ground truth
length.

(4) New Functions. Compilers may create multiple function entry
points, or even multiple functions from a single source code
function, listing each as a separate function in the ELF file.
We have seen this occur with compilers creating a function
preface to map stack parameters into registers, allowing
optimized function calls that just use registers to bypass the
preface. We have also seen compilers take a function that
has distinct execution paths, through a switch or if-then-else
statement predicated upon a parameter, and create multiple
separate functions. The optimizing compiler can determine
the value of the parameter at call time and then call the
correct new function.

For this work, we use all the functions as reported in the
ELF file, except when there are multiple names for the same
function. The code in Listings 6-7 demonstrates this. The icc
compiler with optimization level O1 generated the assembly

fragment in Listing 6 for the start of function ”fix_syms”.
However, for optimization level O2, the compiler generates
the code fragment in Listing 7, and generates a second func-
tion symbol ”fix_syms.”. This second symbol could be used
as an entry point for a function that passed arguments using
registers and not the stack. However, in this example, the
generated binary never called this second entry point, there-
fore we have to question if it is a true function and part of
the ground truth, or should be ignored.
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