
Preventing Zero-Day Exploits of Memory Vulnerabilities with
Guard Lines

Sterling Vinson
The Johns Hopkins University
Applied Physics Laboratory
sterling.vinson@jhuapl.edu

Rachel Stonehirsch
The Johns Hopkins University
Applied Physics Laboratory

rachel.stonehirsch@jhuapl.edu

Joel Coffman∗
The Johns Hopkins University
Applied Physics Laboratory

joel.coffman@jhu.edu

Jim Stevens†
University of Maryland

Department of Computer Science
jims@umd.edu

ABSTRACT
Exploitable memory errors are pervasive due to the widespread
use of unsafe programming languages, such as C and C++. De-
spite much research, techniques for detecting memory errors at
runtime have seen limited adoption due to high performance over-
head, incomplete memory safety, or non-trivial microarchitectural
changes.

This paper describes Guard Lines, a hardware / software memory
error detector that detects common types of spatial and temporal
memory errors at runtime without imposing a significant perfor-
mance penalty (on average only 4%). Guard Lines provides mem-
ory safety by defining certain regions of memory as inaccessible
“guards,” which are created in software during memory allocation.
If a program ever accesses guarded memory, the hardware raises
an exception indicating a memory safety violation. Guard Lines
requires minimal microarchitectural changes, and it uses a novel
metadata design to efficiently track the guard locations. This pa-
per describes the design, implementation, security analysis, and
performance evaluation of Guard Lines and demonstrates its feasi-
bility to protect real-world applications against exploitable memory
vulnerabilities.

CCS CONCEPTS
• Security and privacy→ Software and application security;
Hardware security implementation; • Software and its engi-
neering→ Software testing and debugging; • Computer systems
organization→ Architectures.

∗Work completed at the Johns Hopkins University Applied Physics Laboratory. Joel
Coffman is currently with the Department of Computer and Cyber Sciences at the
United States Air Force Academy.
†Work completed at the Johns Hopkins University Applied Physics Laboratory. Jim
Stevens is currently with the University of Maryland, College Park.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SSPREW9, December 9–10, 2019, San Juan, PR, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7746-1/19/12. . . $15.00
https://doi.org/10.1145/3371307.3371311

KEYWORDS
Guard Lines, memory safety, hardware support, buffer overflows,
AddressSanitizer

ACM Reference Format:
Sterling Vinson, Rachel Stonehirsch, Joel Coffman, and Jim Stevens. 2019.
Preventing Zero-Day Exploits of Memory Vulnerabilities with Guard Lines.
In Software Security, Protection, and Reverse EngineeringWorkshop (SSPREW9),
December 9–10, 2019, San Juan, PR, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3371307.3371311

1 INTRODUCTION
Memory errors are pervasive due to the ongoing use of unsafe
languages, such as C and C++, in the implementation of operat-
ing systems (OSes), applications, and even language runtimes. C
and its immediate descendants emphasize a uniform approach to
handling strings and arrays in terms of pointers, which compli-
cates efficient optimizations due to the difficulty of determining the
objects being referenced [26]. More importantly, C places the bur-
den of memory management on the programmer, with no explicit
support for bounds-checking pointer references and supporting
dynamically-allocated storage only by library routines.

Despite these issues, C remains one of the most popular pro-
gramming languages due to its limited abstractions of hardware
and high performance compared to other languages, as well as the
enormous investment in legacy C-based software. Consequently,
memory errors remain prevalent with buffer overflows perenni-
ally topping the lists of most dangerous software errors.1 Lack of
memory safety is estimated to cost billions of dollars annually in
damages and lost revenue. Eliminating memory errors would have
an enormous impact on cybersecurity because stack and heap er-
rors account for only 50% of reported vulnerabilities but 90% of
exploited vulnerabilities [36]. Moreover, large-scale malware infec-
tions are often based on exploit toolkits where 63% of exploits stem
from memory errors [36].

Given the importance of memory safety, academic research and
commercial products have sought to address this issue, but most
have seen limited success: they raise the difficulty of attacks for
a short period, but adversaries quickly adopt more sophisticated
techniques, which commonly use memory corruption as the initial

1CWE/SANS Top 25 Most Dangerous Software Errors: https://www.sans.org/top25-
software-errors/

https://doi.org/10.1145/3371307.3371311
https://doi.org/10.1145/3371307.3371311
https://www.sans.org/top25-software-errors/
https://www.sans.org/top25-software-errors/

SSPREW9, December 9–10, 2019, San Juan, PR, USA Sterling Vinson, Rachel Stonehirsch, Joel Coffman, and Jim Stevens

path to compromise. Defensive techniques are hamstrung by two
issues: a requirement to support legacy code bases written in unsafe
languages and an unwillingness to accept decreased performance
in exchange for improved security. The adoption of defensive tech-
niques often dictates a performance impact less than 5–10% [34].
Consequently, this paper introduces Guard Lines, a novel approach
to prevent common types of memory errors with low performance
overhead and support for legacy applications.

Guard Lines detects memory errors through the use of “guards,”
which are placed around allocated objects and inside deallocated ob-
jects. The CPU checks these guards on each memory access, raising
an exception to the OS if the accessed region of memory is guarded.
Using Guard Lines only requires programs to be recompiled to
insert instructions to add guards for statically-allocated variables
and stack frames; linking against a runtime library for dynamically-
allocated memory protects variables on the heap. The Guard Lines
design detects linear memory corruption and use-after-free errors
with minimal space and time overhead.

The major contributions of Guard Lines are as follows:
• Guard Lines does not require code changes to existing soft-
ware. Protection for statically-allocated variables and stack
frames only requires recompilation. Heap protection works
with existing dynamically-linked binaries.

• Guard Lines uses minor hardware extensions to minimize
its performance overhead. Guard Lines’s metadata design
allowsmetadata to be checked in parallel with everymemory
access, which is essential for good performance.

• Guard Lines protects against real-world memory vulnerabil-
ities such as Heartbleed.

• Preliminary results indicate that Guard Lines’s performance
impact is acceptable—approximately 4% for the benchmarks
used in our evaluation.

The design of Guard Lines is flexible, supporting the implementation
of eXecute only Memory (XOM) [19] and hiding code pointers
without requiring trampolines [10, 11] or pointer mangling [24].
In conjunction with code diversification, these protections can
prevent code reuse attacks, including just-in-time return-oriented
programming (ROP) (JIT-ROP), without directly modifying code
pointers.

The remainder of this paper is organized as follows. Section 2
provides background material and reviews existing commercial
attempts to address memory safety. Section 3 describes the design
and implementation of Guard Lines. We provide a detailed security
analysis of Guard Lines in Section 4. Section 5 provides an evalua-
tion of the Guard Lines concept. Section 6 discusses related work,
focusing on similar approaches and academic research. Finally, we
conclude in Section 7.

2 BACKGROUND
The security implications of memory corruption were recognized
no later than 1972 [1]. Nevertheless, hardware at the time was too
slow to enforce memory safety, particularly at the granularity of in-
dividual objects, so memory safety in C was left to the programmer,
and memory safety violations proliferated. Since the Morris Worm
in 1988, memory errors, such as buffer overflow and use-after-free
vulnerabilities, have been the root cause of countless cyberattacks.

Memory safety is the restriction of memory accesses to prevent
memory corruption due to software faults, which are defects or
flaws in a software component. Memory safety provides the follow-
ing guarantees [4, 15, 40]:

• a program never reads uninitialized memory,
• a program does not invoke any illegal heap operations (e.g.,
invalid or double frees),

• a program does not access freed memory (e.g., through dan-
gling pointers), and

• a program does not dereference pointers to addresses not as-
sociated with the referenced variable (e.g., buffer overflows).

Amemory error is any access to an object using a pointer expression
different from the one that is intended [35]. There are two types of
memory errors: spatial violations, which are accesses outside the
bounds of the intended object, and temporal violations, which are
accesses to an unallocated or deallocated object.

Software developers and hardware vendors have attempted to
address memory errors using a variety of techniques, including
new programming languages, middleware, and hardware technolo-
gies. While some solutions offer perfect memory safety and others
make corruption—and subsequent exploitation—more difficult, no
solutions satisfy the requirements for both perfect memory safety
and high performance for legacy code bases. The remainder of this
section describes these existing solutions in more detail.

2.1 Programming Languages
Programming languages like Ada and Java enforce memory safety
with bounds checks on all memory accesses and automatic memory
management. Other languages like Rust do not allow null pointers
or dangling pointers in safe code; the compiler ensures that all
accesses to such memory are safe. None of these languages has
replaced unsafe languages, such as C and C++, because their mem-
ory safety features typically decrease performance, the language
itself may be unsuited to low-level systems programming, and vast
amounts of legacy code are already written in unsafe languages.

2.2 Software Technologies
Stack and heap canaries are a runtime technique to prevent buffer
overflows. A canary [9] is an unpredictable, dynamically-generated
value inserted at the end of a buffer. At key points during execution,
such as when returning from a function or using a heap-allocated
object, the canary value is checked against a shadow copy. If the
canary has changed, then the application is considered corrupted.
Canaries have limited value because they can be defeated with
information disclosure vulnerabilities, they provide no protection
against read-based buffer overflows, and they are often disabled
because of their performance overhead.

Other software solutions to mitigate the effects of memory cor-
ruption includeMicrosoft’s EnhancedMitigation Experience Toolkit
(EMET) and Control Flow Guard. EMET uses dynamic binary in-
strumentation (DBI) to add checks on critical function calls (e.g.,

Preventing Zero-Day Exploits of Memory Vulnerabilities with Guard Lines SSPREW9, December 9–10, 2019, San Juan, PR, USA

VirtualProtect) to detect conditions that are similar to ROP at-
tacks.2 Control Flow Guard is a compile-time instrumentation tech-
nique that adds checks to indirect calls to constrain the attacker to
valid transitions in a program’s control flow graph as defined by
the compiler. Unfortunately, both techniques can be subverted by
attackers through memory errors (e.g., Control Flow Bending [7]).

Tools like Purify [14] and Valgrind Memcheck [29] use DBI to
monitor all memory accesses and detect memory corruptions. These
tools suffer from high performance overhead (increasing runtime
by factors of 5-110 and 9–130 respectively [22]) due to the frequency
of instructions that access memory.

2.3 Hardware Changes
Restrictions on executable memory (e.g., the No-eXecute bit (NX
bit) and Write XOR Execute (WˆX)), make it more difficult for at-
tackers to inject executable code directly into a vulnerable program.
Nevertheless, attackers can bypass these protections using code
reuse attacks (e.g., ROP [30] and related techniques [6–8, 13, 27])
to call a memory protection function in the OS. Ultimately, as long
as attackers can corrupt memory, they can cleverly manipulate the
system and bypass defenses.

The most successful memory safety enforcement in hardware
is the guard page, which provides extremely coarse-grained buffer
overflow protection by marking virtual pages as “not present” in
between certain data structures. Linux places a guard page between
each process’s stack and heap, and the OpenBSD memory allocator
places a guard page after all allocations larger than 2 kilobytes.
Guard pages are unsuitable for protecting smaller objects because
they waste enormous amounts of physical memory due to padding.

Fine-grained memory corruption detection and prevention is
even less widely used. The original x86 architecture had a BOUND

instruction that checked the upper and lower bounds of a pointer,
but it was not widely used by C compilers due to high overhead, and
it was removed from the x86-64 specification. Intel re-introduced
bounded pointers with the Memory Protection Extensions (MPX),
but the performance overhead averages 50% [23], and this capability
is not currently used by any major software applications.

Silicon Secured Memory (SSM) in the SPARC architecture uses
memory tagging to associate tag numbers with every pointer and
cache line. The hardware verifies that the two tags match for every
memory access. SSM detects common spatial and temporal safety
memory errors with low performance overhead, but SPARC’s small
market share limits its impact.

3 GUARD LINES
Guard Lines detects memory errors by marking certain memory
locations as inaccessible “guards.” Guards are placed outside of
allocated objects and inside deallocated objects, so common types of
memory errors (e.g., linear buffer overflow and use-after-free errors)
always read or write to a guard. The hardware immediately detects
any access to a guard location and raises an exception, stopping the
program before it can be exploited. Guard Lines supports testing to
detect memory access faults prior to the release of software as well

2A ROP attack [30] constructs sequences of instructions, or “gadgets,” from the pro-
gram’s code and executes these gadgets to turn the program’s original code into an
interpreter capable of arbitrary computation.

// Allocate a 10-byte buffer.
char * buffer = malloc(10);
// Get a string from user input.
char * name = promptUserForName();
// Copy input string into buffer.
strcpy(buffer, name);
// Release the memory used by the buffer.
free(buffer);

Figure 1: An example of unsafe code. If the input string (i.e.,
the user’s name) exceeds the size of the buffer, then it over-
writes adjacent memory.

Figure 2: Example guard locations. Allocation places guards
before and after the object to prevent overflow. Deallocation
guards the entire object to prevent use-after-free.

as operational use in deployed systems to prevent memory exploits,
including zero-day attacks.

The example program in Figure 1 contains a potential memory
error: if the user-provided string is longer than 10 characters, then
the copy to buffer overflows. Guard Lines inserts a guard at the end
of the buffer as shown in Figure 2, so when the overflow attempts
to write to the guard, an exception is raised and the program is
halted.

Guard Lines is simple to use with existing software. Figure 3
depicts the workflow for Guard Lines which involves (1) recom-
piling the software to protect data on the stack, (2) linking to a
custom memory allocation library to protect data on the heap, and
(3) executing the recompiled software on a system with hardware
and OS support for Guard Lines. We briefly describe these steps in
the following paragraphs.

Building on our prior example, the sample program (Figure 1) is
recompiled by a compiler with Guard Lines support. The compiler
inserts instructions to create and remove guards during program
execution to protect statically-allocated variables (e.g., name), in-
cluding global variables, and stack frames. The compiled program
links to a runtime library that uses guards to protect dynamically-
allocatedmemory (e.g., buffer) on the heap. Using both the compiler
instrumentation and the runtime library provides the best protec-
tion, using just one only provides partial protection, and using
neither provides no protection beyond that offered by the original
platform.

In addition to compiler support, Guard Lines requires support
from both hardware and the OS. Guard Lines extends the instruction
set architecture (ISA) to add the custom instructions that create
and remove guards, and it extends the virtual memory system to
add the metadata that defines guards. The CPU checks the guards

SSPREW9, December 9–10, 2019, San Juan, PR, USA Sterling Vinson, Rachel Stonehirsch, Joel Coffman, and Jim Stevens

Figure 3: Guard Lines workflow. Source code is recompiled
for stack protection, and an instrumented memory alloca-
tor provides heap protection. The CPU checks for memory
errors, and the OS is responsible for handling runtime ex-
ceptions.

in parallel on each memory access, and if an accessed region is
guarded, the CPU raises an exception to the OS, which handles
the exception by terminating the program or recovering from the
memory error.

Guard Lines systems are compatible with non-Guard Lines soft-
ware, allowing continued use of legacy applications. Even if the
CPU and OS support Guard Lines, guards will not be set when run-
ning software that has not been compiled to use these protection
mechanisms; the program executes normally, even if it contains
memory safety violations.

The remainder of this section provides further details about the
design of Guard Lines, describing the changes required to the CPU,
OS, and compiler in turn.

3.1 CPU
Hardware changes to the CPU center around the metadata required
to track guards and the new instructions to manipulate that meta-
data. We focus on the design of the metadata because it is critical
to Guard Lines’s efficiency.

3.1.1 Metadata. Guard Lines requires metadata to track inacces-
sible regions of memory (i.e., guards). Performance dictates that
accessing this metadata causes minimal extra memory reads, which
are a major cause of poor performance in other shadow memory
schemes. This is accomplished by placing all metadata in the same
cache lines as regular data.

A two-level metadata structure defines the guard locations. The
first level, located in the page table, indicates which cache lines in a
page contain guard metadata. The second level, located in the cache
line, indicates which bytes in the cache line are inaccessible. The
following paragraphs describe the design of both levels in more
detail.

The top-level metadata is the guard line mask (GLM), which is
added to every page table entry (PTE) as shown in Figure 4. Each
GLM is associated with a single page, and each bit in the GLM
corresponds to a single cache line in that page. A set bit in the
GLM indicates that the cache line contains additional metadata

Figure 4: Guard Lines modifications to a page table entry on
a 64-bit architecture. The guard linemask (GLM) doubles the
size of the page table entry (PTE) from 8 bytes to 16 bytes.

Figure 5: If a cache line contains guards, then the last 8 bytes
of the cache line are used for the guard byte mask (GBM).

Figure 6: A partially guarded cache line shown in a two-
dimensional representation. The last 8 bytes are the guard
bytemask (GBM). Bits set in the GBMdefine guard locations
in the first 56 bytes. The last 8 bits of the GBM are reserved.

specifying the guarded bytes in that line. For a standard-sized 4096-
byte page containing 64 64-byte cache lines, the GLM is 64 bits.3
When there is a page fault, the PTE and GLM are loaded together
from the same cache line and cached together in the translation
lookaside buffer (TLB). In a multi-level page table, only the GLM in
the last table is used, and GLMs in higher level PTEs are ignored if
present.

When accessing virtual memory, the memory management unit
(MMU) retrieves both the PTE and the GLM from the TLB or page
table. It uses the PTE for address translation, and it checks the GLM
to see if the accessed cache line contains guards.

When a bit is set in the GLM, the corresponding cache line
contains additional metadata called the guard byte mask (GBM),

3The design of Guard Lines is compatible with larger page sizes (e.g., 2 MB pages), but
size of the GLM must increase to accommodate the larger page size. Guarded objects
may reside in any size page.

Preventing Zero-Day Exploits of Memory Vulnerabilities with Guard Lines SSPREW9, December 9–10, 2019, San Juan, PR, USA

Figure 7: Hardware Modifications.

shown in Figures 5 and 6. The GBM is 64 bits and located at the end
of the 64-byte cache line. The first 56 bits of the GBM correspond
to the first 56 bytes in the cache line. If any of the GBM bits are set,
then the corresponding bytes are guard bytes. The CPU raises an
exception if a guard byte or the GBM is ever accessed by a load or
store instruction. The last 8 bits of the GBM are currently ignored
and reserved for future extensions of Guard Lines.

3.1.2 Instruction Set. Guard Lines requires new instructions to
modify the protected metadata in the GLM and GBM. The following
instructions efficiently set and clear bits in the metadata to create
and remove guards:
GB_OR addr, mask Creates guard bytes in a cache line. Each set bit

in the mask corresponds to a guarded byte. If the cache line
is not already a guard line, it sets the bit in the GLM and
initializes the GBM with the mask value. Otherwise, it ORs
the GBM with the mask.

GB_NAND addr, mask Removes guard bytes in a cache line. Each set
bit in the mask corresponds to a byte that should no longer
be guarded. It NANDs the GBM with the mask.

GB_QUERY addr, dest Checks for guard bytes in a cache line and
places a bitmask of the guard locations into a register.

GL_NAND addr, mask Removes all guards from select cache lines in
a page. Each set bit in the mask corresponds to a cache line
that should no longer be guarded. It NANDs the GLM with the
mask.

These instructions only modify the GLM and GBM. Guarding or
unguarding a byte does not affect that byte’s contents. The unguard-
ing instructions (GB_NAND and GL_NAND) raise an exception if they
are used at a location that is not guarded.

The new instructions are straightforward to implement. Reading
or writing the GBM is equivalent to a regular load or store because
the GBM address is easily calculated from the operand address.
GLM writes must be implemented in the TLB and page table walker
(PTW) because the GLM is part of the PTE.

3.1.3 Other Changes. Figure 7 shows how Guard Lines modifies
the virtual memory and cache hardware to store metadata and
enforce guards.

Placing the GLM in the PTE increases the PTE size, which re-
quires modifications to the PTW and the TLB. The PTE size is
doubled, so the page table size is also doubled, while the number of
PTEs in each page table stays the same. Every PTE load also caches
the GLM for that page in an expanded TLB.

The cache checks the guard metadata in parallel with each load
or store operation. If any of the accessed bytes are guarded (i.e.,
if the corresponding metadata bits in the GLM and GBM are set),
then the CPU raises an exception. If a violation occurs as a result of
a speculatively executed instruction (e.g., in a Spectre attack [17]),
then the CPU must prevent the memory access without raising an
exception.

3.2 OS
The OS is responsible for creating and managing page tables, so
it must increase the PTE size to include the new GLM field. The
OS also handles Guard Lines exceptions raised by the CPU by
terminating the program or recovering from the memory error.

Runtime Allocator. The runtime memory allocator (e.g., the C stan-
dard library) uses guards to protect dynamically allocated memory.
Allocation functions place boundary guards before and after each
allocation to prevent overflow. Deallocation functions remove the
boundary guards then guard the entire deallocated region to pre-
vent use-after-free. The allocator eventually removes these guards
when it reallocates the memory. Once the guards are removed, use-
after-free errors are undetectable, so reallocation should be delayed
as much as possible. In the sample program (Figure 1), buffer is
dynamically allocated with malloc and deallocated with free, which
place guards as shown in Figure 2.

It is also possible to guard memory before it is first allocated
to prevent uninitialized use errors. However, this is not practical
because completely guarding large memory regions requires one
write for each cache line to set the GBMs.

3.3 Compiler
The compiler protects globals and stack variables by surrounding
them with guards. It adjusts the memory layout so there is at least
one unused byte between adjacent variables and so there is room
for the GBM in cache lines that contain guards.

The compiler inserts instructions in the program to manage
these guards at runtime. The program creates guards around global
variables at start-up and removes them when the program termi-
nates. Guards on the stack are created and removed when calling
and returning from a function. In the sample program (Figure 1),
the pointers to buffer and name are stack variables, so the compiler
guards both of them.

Alternatively, the compiler can use “guard canaries” to protect
entire stack frames rather than individual objects. Guard canaries
serve the same purpose as conventional stack canaries [9] but
have several advantages. Regular stack canaries can only detect if
the canary value is modified, they do not alert until the canary is
checked, and they can even be bypassed if an attacker knows their
value and correctly overwrites them. Guard canaries, however, alert

SSPREW9, December 9–10, 2019, San Juan, PR, USA Sterling Vinson, Rachel Stonehirsch, Joel Coffman, and Jim Stevens

immediately if they are read or overwritten. Guard canaries are
easier to implement than protection for individual objects and have
better performance in some cases, but they do not detect overflow
between objects in the same stack frame.

4 SECURITY ANALYSIS
Guard Lines defends against exploitable memory vulnerabilities.
We assume that the attacker is aware of these vulnerabilities and
is able to exploit them in unprotected software (e.g., by providing
malicious input to the program). This section defines a formal
adversarial model, describes how Guard Lines prevents memory
errors, and identifies limitations of this approach.

Adversarial Model Following prior work [27, 30, 33], we define
an attack as having two steps:

(1) exploit a vulnerability to subvert the program’s normal con-
trol flow and

(2) execute arbitrary computation to cause the program to ac-
complish the attacker’s purpose.

Memory safety is primarily concerned with the first stage of the
attack—that is, altering the program’s intended control flow. To
do so, attacks typically rely on the ability to write arbitrarily to
memory at least once during the program’s execution [7, 33].

Clearly the absence of memory errors or, more generally, perfect
memory safety precludes such attacks. As stated in Section 2, perfect
memory safety provides the following guarantees [4, 15, 40]:

• a program never reads uninitialized memory,
• a program does not invoke any illegal heap operations (e.g.,
invalid or double frees),

• a program does not make any accesses to freed memory (e.g.,
through dangling pointers), and

• a program does not dereference pointers to addresses not as-
sociated with the referenced variable (e.g., buffer overflows).

Guard Lines approximates perfect memory safety by addressing
the last 2 guarantees. It prevents linear spatial access violations and
temporal violations to previously-freed memory. We describe both
in more detail in the following paragraphs and provide a real-world
case study of Guard Lines’s effectiveness in Section 5.

Programs with full Guard Lines protection have guards at the
boundaries of all local, global, and dynamically-allocated variables.
Recently deallocated regions are also guarded, and guard canaries
protect stack frame boundaries.

A buffer overflow vulnerability, like in Figure 1, allows an at-
tacker to write past the end of a buffer and overwrite sensitive
data such as return pointers to hijack the program. Guard Lines
prevents buffer overflow exploits because it is impossible to write
linearly past a buffer boundary without accessing a guard. When
the overflow tries to access the byte immediately before or after the
buffer, Guard Lines detects the violation and prevents the attack.

A dangling pointer vulnerability, a type of use-after-free vulner-
ability, allows an attacker to modify a freed object that the program
continues to use. For example, if a program frees a dynamically-
allocated object but later calls one of its methods, the attacker can
modify the freed object to overwrite its function table and hijack
the program. Guard Lines prevents dangling pointer use by guard-
ing recently freed objects. Once an object is guarded, the program

can no longer call its methods, and the attacker cannot overwrite
its function table.

4.1 Limitations
Guard Lines does not detect non-linear buffer overflows to valid
locations outside a guarded buffer because these accesses skip over
the guards placed around buffers. This is particularly problematic
for globals and stack variables, which are usually allocated close to-
gether in a predictable order with small guards between them. One
possible mitigation is to use random allocation (e.g., DieHard [4])
for all buffer objects to make successful non-linear overflows un-
likely. Another option is to add software bounds checks wherever
Guard Lines alone is insufficient. The compiler could perform either
of these mitigations automatically.

In addition, Guard Lines does not detect use-after-free exploita-
tions if the memory has been reallocated. Reallocating previously
freed memory clears all the guards in the new allocation, so point-
ers that still exist from previous allocations in the same region can
be reused. This issue can be mitigated with randomized allocation
and less heap reuse. For example, the runtime allocator may not re-
allocate memory until after a number of additional allocations [14];
coupled with a randomized allocation strategy, it would be very
difficult for an adversary to reliably overwrite an existing object’s
function pointers to redirect control flow.

Finally, Guard Lines does not detect intra-object overflow. While
it is possible to place guards inside an object (a struct in C), prior
experience indicates that such protections must be suppressible
because some C programs assume such data is contiguous [14].

4.2 Metadata Protection
The Guard Lines metadata must be protected, otherwise an attacker
could potentially clear every guard before causing a memory cor-
ruption. GBMs are always guarded, so accessing one without using
a Guard Lines instruction raises an exception. Although the GLMs
are not guarded, they are inaccessible to user programs because
they are located in the page table, which is protected by the OS. The
OS’s normal memory protection mechanisms protect a program’s
metadata from being accessed by other programs.

Any user program can use Guard Lines instructions to modify its
own guard metadata, so an attacker that gains control of a program
can unguard memory to set up the next stage of the attack. The
unguarding instructions make this more difficult by raising an
exception if the attacker tries to remove guards that do not exist.
Nevertheless, Guard Lines is primarily concerned with stopping
the first stage of an attack, when attackers are unable to arbitrarily
execute unguarding instructions.

5 EVALUATION
We evaluate Guard Lines by (1) testing its ability to detect memory
errors in a case study of the Heartbleed bug and (2) assessing its
performance overhead using the PARSEC benchmark suite.

5.1 Implementations
We implemented Guard Lines in the x86-64 and RISC-V [39] archi-
tectures. We modified Quick Emulator (QEMU) [3] to emulate a

Preventing Zero-Day Exploits of Memory Vulnerabilities with Guard Lines SSPREW9, December 9–10, 2019, San Juan, PR, USA

(a) Unprotected heartbeat request

(b) Protected heartbeat request

Figure 8: (a) The request is placed inside of an oversized
buffer. Data outside of the buffer can be read. (b) Guards
are placed around the oversized buffer. Data outside of the
buffer is protected.

CPU with Guard Lines extensions for x86-64. A custom runtime li-
brary wraps the libc allocation functions to provide heap protection,
while a modified Clang / Low Level Virtual Machine (LLVM) [18]
compiler uses guard canaries to protect stack frames. For RISC-V,
we prototyped Guard Lines in actual hardware using the Rocket
CPU core [2]. We doubled the page table size in the RISC-V Linux
kernel to support the GLM and modified the Newlib runtime library
to provide heap protection. We did not add stack protection to the
RISC-V compiler.

These Guard Lines implementations were straightforward and
did not require extensive changes, as expected from the lightweight
design. For example, the changes to the page table in RISC-V Linux
only affect 15 lines of code.

5.2 Case Study: Heartbleed
The Heartbleed bug was a serious vulnerability in OpenSSL’s trans-
port layer security (TLS) heartbeat implementation that enabled
attackers to remotely read protected server memory like user pass-
words and secret keys [38]. In this case study, we demonstrate how
Guard Lines protections can defeat Heartbleed attacks.

The heartbeat protocol allows machines to remain in contact
with each other by sending “heartbeat” messages. Clients send
heartbeat requests containing a payload message and a message
length value, and servers respond with the same message. If the
provided message length is larger than the actual message, the
request is invalid, and the server should not respond.

Servers vulnerable to Heartbleed copy the request message into
the response without verifying that the provided message length
matches the actual message size. AHeartbleed attack uses an invalid
request to cause a buffer overflowwhich copies potentially sensitive
data into the response.

Guard Lines prevents the most serious Heartbleed attacks, but
it does not prevent every overflow because of OpenSSL’s unusual
memory management strategies. The compiler and runtime library
automatically guard every allocation, but OpenSSL uses a custom
internal memory allocator that places some objects in oversized
allocations. As a result, some Heartbleed attacks effectively only
cause intra-object overflows, which are not detected. In this case,
the attack may leak data from other users’ previous requests, but it
cannot leak more sensitive data like private keys.

When an OpenSSL server receives a heartbeat request, it places
the request in an oversized 16-kilobyte buffer, as shown in Fig-
ure 8 (a). Next, the server copies the request message into the
response. If the provided message length is larger than the actual
message length, then it overflows the request message and begins
reading the data that follows it in memory, with a maximum read
size of 64 kilobytes.

A successful Heartbleed attack must overflow the larger request
buffer in order to leak sensitive data in memory. Guard Lines pre-
vents this overflow by placing guards around the oversized buffer as
shown in Figure 8 (b). The overflow accesses the guard, triggering
an exception that stops the server before it sends the response, so
no sensitive data is released.

Programs that allocate every object individually get full Guard
Lines protections with no code changes, while programs that vio-
late this rule, such as OpenSSL, only receive partial protections.4
OpenSSL could eliminate the effective intra-object overflow by us-
ing allocations of the correct size or placing guards inside of the
oversized allocations.

We demonstrated this case study on both the RISC-V CPU and
the x86-64 emulator and showed that Guard Lines defeats Heart-
bleed attacks.

5.3 Benchmarks
To assess the software performance overhead of Guard Lines, we
used the PARSEC 3.0 benchmark suite [5]. Amodified Clang / LLVM
compiler inserts guard canaries to protect stack frames, but does
not protect individual local variables. A custom runtime library
wraps the libc allocation functions using LD_PRELOAD to guard every
allocation and every deallocated region in the heap.

We did not benchmark either of the full Guard Lines implemen-
tations because the x86-64 QEMU version is not reflective of actual
hardware, and the RISC-V version has limited compatibility with
available benchmark suites. Instead, we used stock x86-64 hard-
ware, with all custom Guard Lines instructions in the compiler and
runtime library replaced with store instructions. We expect that
the performance overhead due to hardware is small relative to the
software overhead, so these benchmarks roughly approximate the
overall performance overhead for Guard Lines. These assumptions
are discussed further in Section 5.4.

The benchmarks were all compiled with Clang version 3.6.2 and
runwith the PARSEC native input set.We did not use facesim, ferret,
freqmine, raytrace, and x264 in our evaluation: facesim and raytrace
would not compile using Clang 3.6.2, and AddressSanitizer did not
work correctly with ferret, freqmine, and x264, which precluded
comparison using these programs. To evaluate the performance of
Guard Lines we compared it against the following configurations:
Native Default settings with no additional protections
Stack Canaries Stack canaries only
Guard Lines Canaries Guard canaries only
Guard Lines Heap Guard Lines heap protection only
Guard Lines Full Guard canaries and heap protection

4Naturally, the applicability of Guard Lines heap protection depends upon the number
of programs that use standard allocation functions (e.g., malloc and free) instead
of providing their own replacements in a custom memory allocator. Our assumption
that most programs use standard allocation functions is consistent with other research
in this field (e.g., [4]).

SSPREW9, December 9–10, 2019, San Juan, PR, USA Sterling Vinson, Rachel Stonehirsch, Joel Coffman, and Jim Stevens

Table 1: Mean performance overhead for each configuration

Configuration Overhead (%)
Stack Canaries 0.1
Guard Lines Canaries 0.8
Guard Lines Heap 3.2
Guard Lines Full 4.1
AddressSanitizer [28] 35.8

AddressSanitizer AddressSanitizer [28] only
Figure 9 shows the benchmark results, and Table 1 lists the average
(weighted arithmetic mean [16]) overhead for each configuration.

Guard Lines Full has an average overhead of 4.1%. Most of this
is attributable to heap protection (3.2%), while guard canaries add
negligible overhead (0.8%). Guard Lines performs significantly bet-
ter than AddressSanitizer (averaging 35.8% overhead), with lower
overhead for every benchmark program. Stack canaries, on the
other hand, has the best performance with only a 0.1% overhead.
However, they offer the weakest security guarantees and are easily
defeated. Notably, Guard Lines satisfies the performance require-
ment for practical security techniques, an overhead of less than
5–10% [34].

Programs that make more allocations have higher overhead for
both Guard Lines and AddressSanitizer. canneal has the highest
overhead for Guard Lines (22%) because it makes millions of very
small allocations. This is close to a worst-case for Guard Lines
because of the high number of guard instructions and the amount of
memory reserved for guards. Programs that make fewer allocations,
such as blackscholes and dedup, have negligible overhead for Guard
Lines.

5.4 Discussion
Guard Lines minimizes overhead for metadata checks by placing all
metadata in the same cache lines as regular data. The GLM is in the
same cache line as the PTE, and the GBM is in the same cache line
as the guards that it defines. This extreme spatial locality means
that the hardware can access metadata with no additional memory
reads and check for guards in parallel with every memory access.

The added Guard Lines instructions introduce some overhead,
although this overhead is mitigated by the high spatial and tem-
poral locality with other memory accesses. One guard instruction
is required for each cache line when creating guards. Each heap
allocation requires just 1 or 2 guard instructions, but deallocations
require 1 guard instruction per cache line to set guards in the entire
freed region.

The added metadata increases memory usage and disperses data,
which can reduce performance. The page table size is doubled to
include the GLM, and the GBM requires 8 bytes at the end of the
cache line when it is present. GBMs could be present in every cache
line, so the maximum memory usage for GBMs is one-eighth of
a program’s memory. The actual memory usage depends on the
allocation pattern. There is 1 or 2 guarded cache lines per heap
allocation, which results in an overhead of one-eighth of memory
for small allocations and negligible overhead for large allocations.

The guard bytes themselves can also increase memory usage. At
least one unused byte must be present before and after each object.
In many cases, those unused bytes are already present because of
alignment padding, so there is no memory overhead. When not
enough padding is present, it is necessary to adjust the memory
layout to make room for guards or GBMs.

6 RELATEDWORK
Memory errors have been a serious security issue for decades, and
many solutions have been proposed to improve memory safety.
Section 2 reviews several existing commercial techniques. The fol-
lowing section discusses academic efforts that address this issue.

6.1 AddressSanitizer
AddressSanitizer [28] is the primary inspiration behind Guard Lines.
Both use inaccessible guards in memory (called “poisoned redzones”
in AddressSanitizer) to detect spatial and temporal memory errors.
Unlike Guard Lines, AddressSanitizer is implemented entirely in
software, using compile-time instrumentation (CTI) to create red-
zones and check them on each memory access. It stores its metadata
in a contiguous shadow memory region which maps to the entire
memory space. The instrumentation required to monitor mem-
ory accesses is on the order of 5–10 instructions at minimum, and
the metadata checks require additional memory accesses to load
the metadata from shadow memory. As a result, AddressSanitizer
suffers from significant performance overhead, with an average
slowdown of 73% and a 3x increase in memory usage [28], making
it more suitable for testing and debugging than for deployment.

Guard Lines, on the other hand, is designed to avoid these causes
of overhead. Metadata checks are performed by the hardware, and
the guard metadata is located near the guards to avoid extra mem-
ory reads. In addition, Guard Lines is more granular and does not
require as much memory for metadata—only an eighth of some
cache lines instead of an eighth of the entire virtual memory space.
With just 4% average overhead, Guard Lines could be used in de-
ployed systems. Furthermore, AddressSanitizer can only monitor
memory accesses in binaries compiled with AddressSanitizer in-
strumentation enabled. Guard Lines offers full heap protection for
existing dynamically-linked binaries, with additional stack protec-
tion available for recompiled code.

6.2 REST
Random Embedded Secret Tokens (REST) [32], like Guard Lines, is a
hardware technique used to implement AddressSanitizer’s memory
error detection algorithm with lower performance overhead. Both
REST and Guard Lines avoid shadow memory and maximize spatial
locality to reduce overhead for guard checks. Rather than external
metadata, REST uses thememory contents to determine if amemory
region is blacklisted. If a cache line’s contents match a secret token
value, then that cache line is a token, and any memory access
triggers an exception.

REST has beenmore extensively evaluated than Guard Lines, and
it currently has better performance (2% overhead compared to 4%),
but Guard Lines offers several advantages. REST is less granular,
with 64-byte tokens (16 bytes in an alternate design) compared to 1
byte in Guard Lines. This wastes significant memory for the tokens

Preventing Zero-Day Exploits of Memory Vulnerabilities with Guard Lines SSPREW9, December 9–10, 2019, San Juan, PR, USA

Figure 9: Mean performance overhead for 20 runs of each benchmark (lower is better). Error bars indicate the standard devia-
tion of the runs. The bottomgraph omits AddressSanitizer to highlight the overhead of the variousGuard Lines configurations.

themselves and for padding each allocation to the end of the cache
line. This padding can cause false negatives in REST that do not
occur in Guard Lines. There is also a small chance of false positives
in REST if memory contents in a program happen to match the
random secret token value. More critically, the design of Guard
Lines allows extensions to support additional use cases, such as
XOM.

6.3 Pointer Checking
Pointer checking is a class of techniques in which metadata, such as
an upper and lower bound, is associated with each pointer. Three
prominent hardware-based pointer checking technologies are Hard-
bound [12], Watchdog [20], and Intel MPX [23]. Watchdog provides
complete spatial and temporal memory safety, while Hardbound
and MPX just provide complete spatial protection. All three use
disjoint metadata stored in a shadow memory space.

Their performance varies:MPXhas 50% overhead on average [23],
Watchdog has 24% overhead [20], and Hardbound has just 5% over-
head [12]. A major cause of this overhead is the use of disjoint
metadata. Additional loads are required to retrieve metadata from
the shadow space. Shadow memory is also inefficient in terms of
storage because the entire address space is shadowed even if only
a small percentage of the address space stores pointers. This con-
tributes to a high memory overhead, as shown by Watchdog [20],
which has a 56% memory overhead. These approaches also require

extensive microarchitectural changes, i.e. adding caches for the
pointer metadata and injecting micro-ops to check and manage the
metadata. WatchdogLite [21], a variant of Watchdog, requires mini-
mal hardware changes, but as a result has more software complexity
and slightly worse performance thanWatchdog (29% overhead com-
pared to 24%).

6.4 Others
MemTracker [37] uses a programmable state transition table to
monitor accesses to memory addresses and has on average a 2.7%
performance overhead. However, it requires significant hardware
changes including new pipeline stages and a new cache for the
state metadata.

HeapMon [31] is a similar approach that uses a helper thread
to keep track of memory state and monitor for memory errors. It
detects heap memory bugs with good performance (5% average
overhead), but it also requires substantial hardware support (cache
extensions and communication queues).

SafeMem [25] uses error-correcting code (ECC) metadata in
DRAM to detect illegal memory accesses. No hardware changes are
required, but it only works at cache line granularity, and enabling
or disabling protection is fairly slow because it requires a write to
main memory.

SSPREW9, December 9–10, 2019, San Juan, PR, USA Sterling Vinson, Rachel Stonehirsch, Joel Coffman, and Jim Stevens

7 CONCLUSION
This paper describes Guard Lines, a hardware / software memory
error detector that eliminates common types of memory errors with
acceptable performance overhead (on average only 4%). Guard Lines
combines the hardwaremechanism and performance of guard pages
with the fine-grained redzone algorithm used by AddressSanitizer.
The novel design of the guard metadata maximizes the locality of
reference to avoid extra memory accesses for guard checks. Guard
Lines does not require extensive microarchitectural changes, and it
provides heap protection for legacy binaries without recompilation.

Guard Lines prevents many types of memory errors, but it does
not offer complete memory safety by itself. However, it is possible to
combine it with other technologies to improve its security guaran-
tees. For example, adding layout randomization or software bounds
checks approximates complete spatial memory safety. Though we
do not explore such extensions here, the design of Guard Lines is
also sufficiently flexible to support XOM and hiding code point-
ers, which, in combination with other techniques such as code
diversification, can prevent code reuse attacks.

Guard Lines can also be used as a general-purpose memory
tagging technique. The existing design can easily be extended to
support new policies by changing the meaning of the lower-level
metadata (the GBM). Potential applications include bounded point-
ers providing perfect memory safety, thread synchronization en-
forcement, multi-level security, and hints to the CPU to improve
prefetching and cache utilization.

With its simple design and low overhead, Guard Lines is viable
for use in production environments, where it would significantly
improve computer security. The combination of hardware and soft-
ware changes mean that widespread adoption would be a lengthy
process. Nevertheless, we believe that the ongoing risk posed by
memory errors warrants this investment.

REFERENCES
[1] James P. Anderson. 1972. Computer Security Technology Planning Study Volume

II. Technical Report ESD-TR-73-51.
[2] Krste Asanović, Rimas Aviz̆ienis, Jonathan Bachrach, Scott Beamer, David Bian-

colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-
vitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup Lee,
Eric Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert
Ou, David A. Patterson, Brian Richards, Colin Schmidt, Stephen Twigg, Huy
Vo, and Andrew Waterman. 2016. The Rocket Chip Generator. Technical Re-
port UCB/EECS-2016-17. EECS Department, University of California, Berkeley.
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

[3] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In USENIX
Annual Technical Conference, FREENIX Track. USENIX Association, Berkeley,
CA, USA, 41–46. https://www.usenix.org/legacy/events/usenix05/tech/freenix/
bellard.html

[4] Emery D. Berger and Benjamin G. Zorn. 2006. DieHard: Probabilistic Memory
Safety for Unsafe Languages. In Proceedings of the 27th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’06). ACM, New
York, NY, USA, 158–168. https://doi.org/10.1145/1133981.1134000

[5] Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D. Dissertation.
Princeton University.

[6] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang. 2011. Jump-
oriented Programming: A New Class of Code-reuse Attack. In Proceedings of the
6th ACM Symposium on Information, Computer and Communications Security
(ASIACCS ’11). ACM, New York, NY, USA, 30–40. https://doi.org/10.1145/1966913.
1966919

[7] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R.
Gross. 2015. Control-Flow Bending: On the Effectiveness of Control-Flow In-
tegrity. In Proceedings of the 24th USENIX Security Symposium (USENIX Security
’15). USENIX Association, Berkeley, CA, USA, 161–176. https://www.usenix.org/
conference/usenixsecurity15/technical-sessions/presentation/carlini

[8] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi,
Hovav Shacham, and Marcel Winandy. 2010. Return-oriented Programming
Without Returns. In Proceedings of the 17th ACM Conference on Computer and
Communications Security (CCS ’10). ACM, New York, NY, USA, 559–572. https:
//doi.org/10.1145/1866307.1866370

[9] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. 1998. Stack-
Guard: Automatic Adaptive Detection and Prevention of Buffer-Overflow At-
tacks. In USENIX Security Symposium. USENIX Association, Berkeley, CA, USA,
63–78. https://www.usenix.org/legacy/publications/library/proceedings/sec98/
cowan.html

[10] Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen,
Ahmad-Reza Sadeghi, Stefan Brunthaler, and Michael Franz. 2015. Readactor:
Practical Code Randomization Resilient to Memory Disclosure. In Proceedings of
the 2015 IEEE Symposium on Security and Privacy (SP ’15). IEEE Computer Society,
Washington, DC, USA, 763–780. https://doi.org/10.1109/SP.2015.52

[11] Stephen J. Crane, Stijn Volckaert, Felix Schuster, Christopher Liebchen, Per Larsen,
Lucas Davi, Ahmad-Reza Sadeghi, Thorsten Holz, Bjorn De Sutter, and Michael
Franz. 2015. It’s a TRaP: Table Randomization and Protection Against Function-
Reuse Attacks. In Proceedings of the 22Nd ACM SIGSAC Conference on Computer
and Communications Security (CCS ’15). ACM, New York, NY, USA, 243–255.
https://doi.org/10.1145/2810103.2813682

[12] Joe Devietti, Colin Blundell, Milo M.K. Martin, and Steve Zdancewic. 2008. Hard-
Bound: Architectural Support for Spatial Safety of the C Programming Language.
In Proceedings of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’08). ACM, New York,
NY, USA, 103–114. https://doi.org/10.1145/1346281.1346295

[13] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Martin Rinard,
Hamed Okhravi, and Stelios Sidiroglou-Douskos. 2015. Control Jujutsu: On the
Weaknesses of Fine-Grained Control Flow Integrity. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security (CCS ’15).
ACM, New York, NY, USA, 901–913. https://doi.org/10.1145/2810103.2813646

[14] Reed Hastings and Bob Joyce. 1992. Purify: Fast Detection of Memory Leaks and
Access Errors. In Proceedings of the Winter 1992 USENIX Conference.

[15] Michael Hicks. 2014. What is memory safety? Online: http://www.pl-enthusiast.
net/2014/07/21/memory-safety/ (Accessed: 06 March 2018). http://www.pl-
enthusiast.net/2014/07/21/memory-safety/

[16] Lizy Kurian John. 2004. More on Finding a Single Number to Indicate Overall
Performance of a Benchmark Suite. SIGARCH Computer Architecture News 32, 1
(March 2004), 3–8. https://doi.org/10.1145/991124.991126

[17] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
2018. Spectre Attacks: Exploiting Speculative Execution. ArXiv e-prints (January
2018), 16. arXiv:1801.01203

[18] C. Lattner and V. Adve. 2004. LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation. In International Symposium on Code Gen-
eration and Optimization (CGO ’04). IEEE Computer Society, Washington, DC,
USA, 75–86. https://doi.org/10.1109/CGO.2004.1281665

[19] David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh,
John Mitchell, and Mark Horowitz. 2000. Architectural Support for Copy and
Tamper Resistant Software. SIGPLAN Notices 35, 11 (November 2000), 168–177.
https://doi.org/10.1145/356989.357005

[20] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. 2012. Watchdog:
Hardware for Safe and Secure Manual Memory Management and Full Memory
Safety. In Proceedings of the 39th Annual International Symposium on Computer
Architecture (ISCA ’12). IEEE Computer Society, Washington, DC, USA, 189–200.

[21] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. 2014. Watch-
dogLite: Hardware-Accelerated Compiler-Based Pointer Checking. In Proceed-
ings of Annual IEEE/ACM International Symposium on Code Generation and
Optimization (CGO ’14). ACM, New York, NY, USA, 175:175–175:184. https:
//doi.org/10.1145/2581122.2544147

[22] George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and West-
ley Weimer. 2005. CCured: Type-safe Retrofitting of Legacy Software. ACM
Transactions on Programming Language Systems 27, 3 (May 2005), 477–526.
https://doi.org/10.1145/1065887.1065892

[23] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber, and Christof
Fetzer. 2017. Intel MPX Explained: An Empirical Study of Intel MPX and Software-
based Bounds Checking Approaches. arXiv.org abs/1702.00719 (June 2017), 24.
http://arxiv.org/abs/1702.00719

[24] Marios Pomonis, Theofilos Petsios, Angelos D. Keromytis, Michalis Polychron-
akis, and Vasileios P. Kemerlis. 2017. kRˆX: Comprehensive Kernel Protection
Against Just-In-Time Code Reuse. In Proceedings of the Twelfth European Con-
ference on Computer Systems (EuroSys ’17). ACM, New York, NY, USA, 420–436.
https://doi.org/10.1145/3064176.3064216

[25] Feng Qin, Shan Lu, and Yuanyuan Zhou. 2005. SafeMem: Exploiting ECC-Memory
for Detecting Memory Leaks and Memory Corruption During Production Runs.
In HPCA ’05. IEEE Computer Society, Washington, DC, USA, 291–302. https:
//doi.org/10.1109/HPCA.2005.29

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://www.usenix.org/legacy/events/usenix05/tech/freenix/bellard.html
https://www.usenix.org/legacy/events/usenix05/tech/freenix/bellard.html
https://doi.org/10.1145/1133981.1134000
https://doi.org/10.1145/1966913.1966919
https://doi.org/10.1145/1966913.1966919
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/carlini
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/carlini
https://doi.org/10.1145/1866307.1866370
https://doi.org/10.1145/1866307.1866370
https://www.usenix.org/legacy/publications/library/proceedings/sec98/cowan.html
https://www.usenix.org/legacy/publications/library/proceedings/sec98/cowan.html
https://doi.org/10.1109/SP.2015.52
https://doi.org/10.1145/2810103.2813682
https://doi.org/10.1145/1346281.1346295
https://doi.org/10.1145/2810103.2813646
http://www.pl-enthusiast.net/2014/07/21/memory-safety/
http://www.pl-enthusiast.net/2014/07/21/memory-safety/
http://www.pl-enthusiast.net/2014/07/21/memory-safety/
http://www.pl-enthusiast.net/2014/07/21/memory-safety/
https://doi.org/10.1145/991124.991126
http://arxiv.org/abs/1801.01203
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/356989.357005
https://doi.org/10.1145/2581122.2544147
https://doi.org/10.1145/2581122.2544147
https://doi.org/10.1145/1065887.1065892
http://arxiv.org/abs/1702.00719
https://doi.org/10.1145/3064176.3064216
https://doi.org/10.1109/HPCA.2005.29
https://doi.org/10.1109/HPCA.2005.29

Preventing Zero-Day Exploits of Memory Vulnerabilities with Guard Lines SSPREW9, December 9–10, 2019, San Juan, PR, USA

[26] Dennis M. Ritchie. 1993. The Development of the C Language. In The Second
ACM SIGPLAN Conference on History of Programming Languages (HOPL-II). ACM,
New York, NY, USA, 201–208. https://doi.org/10.1145/154766.155580

[27] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza
Sadeghi, and Thorsten Holz. 2015. Counterfeit Object-oriented Programming:
On the Difficulty of Preventing Code Reuse Attacks in C++ Applications. In 2015
IEEE Symposium on Security and Privacy. IEEE Computer Society, Washington,
DC, USA, 745–762. https://doi.org/10.1109/SP.2015.51

[28] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In Proceedings
of the 2012 USENIX Annual Technical Conference (USENIX ATC ’12). USENIX
Association, Berkeley, CA, USA, 309–318. https://www.usenix.org/conference/
atc12/technical-sessions/presentation/serebryany

[29] Julian Seward and Nicholas Nethercote. 2005. Using Valgrind to Detect Undefined
Value Errors with Bit-Precision. In USENIX Annual Technical Conference. USENIX
Association, Berkeley, CA, USA, 17–30. http://static.usenix.org/events/usenix05/
tech/general/seward.html

[30] Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-
into-libc Without Function Calls (on the x86). In Proceedings of the 14th ACM
Conference on Computer and Communications Security (CCS ’07). ACM, New York,
NY, USA, 552–561. https://doi.org/10.1145/1315245.1315313

[31] Rithin Shetty, Mazen Kharbutli, Yan Solihin, andMilos Prvulovic. 2006. HeapMon:
A Helper-thread Approach to Programmable, Automatic, and Low-overhead
Memory Bug Detection. IBM J. Res. Dev. 50, 2/3 (March 2006), 261–275. https:
//doi.org/10.1147/rd.502.0261

[32] Kanad Sinha and Simha Sethumadhavan. 2018. Practical Memory Safety with
REST. In Proceedings of the 45th International Symposium on Computer Architecture
(ISCA ’18). IEEE Press, Piscataway, NJ, 600–611. https://doi.org/10.1109/ISCA.
2018.00056

[33] Kevin Z Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher
Liebchen, and Ahmad-Reza Sadeghi. 2013. Just-In-Time Code Reuse: On the
Effectiveness of Fine-Grained Address Space Layout Randomization. In 2013 IEEE

Symposium on Security and Privacy. IEEE Computer Society, Washington, DC,
USA, 574–588.

[34] László Szekeres, Mathais Payer, Tao Wei, and Dawn Song. 2013. SoK: Eternal
War in Memory. In 2013 IEEE Symposium on Security and Privacy. IEEE Computer
Society, Washington, DC, USA, 48–62. https://doi.org/10.1109/SP.2013.13

[35] Victor van der Veen, Nitish dutt Sharma, Lorenzo Cavallaro, and Herbert Bos.
2011. Memory Errors: The Past, the Present, and the Future. Technical Report
IR-CS-73.

[36] Victor van der Veen, Nitish dutt Sharma, Lorenzo Cavallaro, and Herbert Bos.
2012. Memory Errors: The Past, the Present, and the Future. In Proceedings of
the 15th International Symposium on Research in Attacks, Intrusions, and Defenses
(RAID ’12), Davide Balzarotti, Salvatore J. Stolfo, and Marco Cova (Eds.). Springer,
Berlin, Heidelberg, 86–106. https://doi.org/10.1007/978-3-642-33338-5_5

[37] Guru Venkataramani, Brandyn Roemer, Yan Solihin, and Milos Prvulovic. 2007.
MemTracker: Efficient and Programmable Support for Memory Access Monitor-
ing and Debugging. In Proceedings of the 2007 IEEE 13th International Symposium
on High Performance Computer Architecture (HPCA ’13). IEEE Computer Society,
Washington, DC, USA, 273–284. https://doi.org/10.1109/HPCA.2007.346205

[38] J. Wang, M. Zhao, Q. Zeng, D. Wu, and P. Liu. 2015. Risk Assessment of Buffer
“Heartbleed” Over-Read Vulnerabilities. In 2015 45th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks. IEEE Computer Society,
Washington, DC, USA, 555–562. https://doi.org/10.1109/DSN.2015.59

[39] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanović. 2014.
The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Version 2.0. Technical
Report UCB/EECS-2014-54. EECS Department, University of California, Berkeley.
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html

[40] Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve Zdancewic.
2012. Formalizing the LLVM Intermediate Representation for Verified Program
Transformations. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL ’12). ACM, New York, NY,
USA, 427–440. https://doi.org/10.1145/2103656.2103709

https://doi.org/10.1145/154766.155580
https://doi.org/10.1109/SP.2015.51
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
http://static.usenix.org/events/usenix05/tech/general/seward.html
http://static.usenix.org/events/usenix05/tech/general/seward.html
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1147/rd.502.0261
https://doi.org/10.1147/rd.502.0261
https://doi.org/10.1109/ISCA.2018.00056
https://doi.org/10.1109/ISCA.2018.00056
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1007/978-3-642-33338-5_5
https://doi.org/10.1109/HPCA.2007.346205
https://doi.org/10.1109/DSN.2015.59
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html
https://doi.org/10.1145/2103656.2103709

	Abstract
	1 Introduction
	2 Background
	2.1 Programming Languages
	2.2 Software Technologies
	2.3 Hardware Changes

	3 Guard Lines
	3.1 CPU
	3.2 OS
	3.3 Compiler

	4 Security Analysis
	4.1 Limitations
	4.2 Metadata Protection

	5 Evaluation
	5.1 Implementations
	5.2 Case Study: Heartbleed
	5.3 Benchmarks
	5.4 Discussion

	6 Related Work
	6.1 AddressSanitizer
	6.2 REST
	6.3 Pointer Checking
	6.4 Others

	7 Conclusion
	References

