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ABSTRACT
Binary packing, encoding binary code prior to execution and deco-

ding them at run time, is the most common obfuscation adopted

by malware authors to camouflage malicious code. Especially, most

packers recover the original code by going through a set of “written-

then-executed” layers, which renders determining the end of the

unpacking increasingly difficult. Many generic binary unpacking

approaches have been proposed to extract packed binaries without

the prior knowledge of packers. However, the high runtime over-

head and lack of anti-analysis resistance have severely limited their

adoptions. Over the past two decades, packed malware is always a

veritable challenge to anti-malware landscape.

This paper revisits the long-standing binary unpacking problem

from a new angle: packers consistently obfuscate the standard use

of API calls. Our in-depth study on an enormous variety of Win-

dows malware packers at present leads to a common property:

malware’s Import Address Table (IAT), which acts as a lookup table

for dynamically linked API calls, is typically erased by packers for

further obfuscation; and then unpacking routine, like a custom
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dynamic loader, will reconstruct IAT before original code resumes

execution. During a packed malware execution, if an API is invo-

ked through looking up a rebuilt IAT, it indicates that the original

payload has been restored. This insight motivates us to design an

efficient unpacking approach, called BinUnpack. Compared to the

previous methods that suffer frommultiple “written-then-executed”

unpacking layers, BinUnpack is free from tedious memory access

monitoring, and therefore it introduces very small runtime over-

head. To defeat a variety of ever-evolving evasion tricks, we design

BinUnpack’s API monitor module via a novel kernel-level DLL hi-

jacking technique. We have evaluated BinUnpack’s efficacy extensi-

vely with more than 238K packed malware and multiple Windows

utilities. BinUnpack’s success rate is significantly better than that of

existing tools with several orders of magnitude performance boost.

Our study demonstrates that BinUnpack can be applied to speeding

up large-scale malware analysis.
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1 INTRODUCTION
Malicious software (malware) has become a significant threat to cy-

bersecurity. Big malware attacks such as ransomware ripple across

the world and cause catastrophic damage [6, 66]. Driven by the rich

profit, cyber-criminals are highly motivated to undermine malware

detection/analysis by applying numerous obfuscation schemes [94].

Among them, binary packing is believed to be a panacea to thwart

the widely used anti-virus scanning [11, 50, 65, 70]. Binary packers

first encode malware code through encryption or compression and

attach an unpacking routine to the packed malware. In addition,

packers also erase the Portable Executable (PE) file’s import address

table (IAT) to complicate the analysis of API calls. When a packed

malware starts running, the unpacking routine first decodes the

payload binary to memory pages and reconstructs its IAT. After

that, the execution flow will jump to the original entry point (OEP)

to resume malware payload execution. In this way, the actual mali-

cious code and data stays unrecognizable until run time, making it

immune to malware analysis techniques that measure static featu-

res. For example, applying machine learning to large-scale packed

malware will lead to the detection of packers rather than malicious

behavior [100]. An embarrassing fact is many anti-virus scanners,

which are widely deployed at the end host, take a particular pac-

ker’s signature as the identification of malware [93, 104]. A study

in 2013 shows that nearly 70% of packed Windows system files are

falsely labeled as malware [67].

Binary packing technique has evolved from the simple, single-

layer packer to the complicated, multi-layer packer with a variety

of anti-analysis tricks [97]. When a packed binary starts running,

the original code is written in memory pages sometime and then

get executed. Besides, this “written-then-executed” procedure can
iterate many times, i.e., the dynamically generated code itself may

continue generating new code and executing it. Each iteration of

dynamically generated code is called a layer [97] or wave [14]. The
previous generic unpacking tools have fully utilized this feature

by tracking the “written-then-executed” instructions [3, 9, 36, 55,

77, 81] or memory pages [28, 31, 49, 56]. However, no silver bullet
can sharply determine the end of multi-layer unpacking because it

has been proven to be an undecidable problem [83]
1
. The existing

approaches have to continuously monitor all possible “written-

then-executed” layers and detect the existence of original code

in a certain layer with several heuristics [28, 35, 37, 55]. All of

these factors contribute to the high runtime overhead imposed by

current generic unpacking tools, making them too expensive for

wide deployment.

The second notable feature of sophisticated packers is that they

adopt different anti-analysis techniques to impede unpacking at-

tempts [13, 21, 82]. To track a packer’s self-decoding progress,

generic unpacking typically relies on dynamic analysis techni-

ques, such as debugging [17, 83, 91], dynamic binary instrumen-

tation [3, 9, 55, 77, 81], system emulator [8, 29, 36, 97], and API

hooking [31, 49, 56]. However, most of them are not transparent to

the packers. Evasive packers can fingerprint these analysis systems

and, as a result, terminate unpacking execution [40]. Themida [72],

1
Denis et al. prove that detecting the end of unpacking can be reduced to an NP-

complete problem under certain assumptions [10].

a well-known commercial packer, even applies virtualization obfus-

cation to its unpacking routine [85, 102], which will result in 630X

instruction size explosion when tracing unpacking progress [63].

Worse still, malware authors can customize new packers from exis-

ting ones, as many packers are open source (e.g., UPX
2
and Yoda’s

Protector
3
). The lack of anti-analysis resistance renders existing

generic unpacking futile for sophisticated packers. Security com-

panies have been overwhelmed by packed malware over the past

two decades, which slows down the response to emerging malware

threats [15, 64, 73]. An online packing service even utilizes existing

packers and anti-malware scanners as a feedback mechanism, and

it returns the packer that presents the optimal evasion result [69].

In this paper, we present a new generic unpacking idea by stu-

dying how packers obfuscate payload binary’s API call resolution.

Our approach, named BinUnpack, is motivated by two key observa-

tions. The first one is, no matter how sophisticated a packer may

evolve, malware payload always interacts with Windows OS to

perform malicious behavior (e.g., code remote injection and ran-

somware’s file encryption). Malware authors achieve this mainly

by calling user-level Windows APIs rather than native APIs
4
, since

most API semantic information is missing at the native level. Typi-

cally, binary code resolves a Windows API’s address by visiting PE

header’s IAT, which is an address lookup table when calling APIs

exported by a dynamic-link library (DLL). As the Windows APIs in

payload reveal rich semantics about malware and hence can provide

security analysts with an upper hand, our second observation is a

packer usually removes the payload’s import address table (IAT)

to impede reverse engineering. Afterwards, the unpacking routine

will obtain each API’s address and rebuild the IAT at run time. In

this way, the restored payload can invoke Windows APIs properly.

These observations inspire us to chase down a new heuristic to

determine the end of unpacking: if an API call is invoked through

looking up a rebuilt IAT, it indicates that the original code has been

restored, and the control flow has reached OEP already
5
. We call

this property as “rebuilt-then-called”. The key idea of BinUnpack is

to capture such a “rebuilt-then-called” feature instead of “written-

then-executed” behavior. To this end, BinUnpack hooks API calls

and finds the first one whose related IAT is rebuilt at run time. Then,

tracing back from that API, BinUnpack is able to locate OEP within

a very short distance. Compared to the existing work, BinUnpack

presents a distinct advantage: it sidesteps multi-layer unpacking

and avoids the significant overhead imposed by tedious memory

access tracing. It seems API hooking has become a textbook pro-

blem, as many options are available in the arsenal [2, 101, 105].

However, state-of-the-art malware packers have already embedded

anti-hooking tricks (e.g., stolen code [38], process hollowing [48],

and crash hooking module [41]) to evade API monitoring. Our solu-

tion is to develop a hybrid, kernel-level DLL hijacking technique as

API monitoring module. Our approach overcomes the path search

order limit for core DLLs (e.g., kernel32.dll), which prevents the

traditional way [79] from achieving complete DLL hijacking. Furt-

hermore, we have integrated existing work in system call sequence

alignment [42], memory subversion rootkit [90], and scalable binary

2
https://upx.github.io/

3
https://sourceforge.net/projects/yodap/

4
Windows system calls are also known as native APIs.

5
We will discuss the exceptions of this conclusion in Section 7.
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function matching [87] to deal with fake API calls, DLL integrity

check, and custom API implementation, respectively. Our design

enables a strong resistance to various evasions.

We have performed a large-scale evaluation with 238, 835 pac-

ked malware and a set of common Windows utilities. Our tested

packer types contains a full range of malware packers in use, in-

cluding sophisticated commercial and custom packers. We also

evaluate BinUnpack with more challenging cases, such as multiple

packer combinations, a partial code revealing packer
6
, and possible

denial-of-service (DoS) attacks. Nevertheless, BinUnpack maintains

a high success rate consistently in all cases. The unpacked code

produced by BinUnpack can greatly increase the accuracy of anti-

virus scanning, and the overhead to Windows utility execution

is negligible as well. The comparative evaluation on a consumer

grade laptop shows that BinUnpack outperforms existing tools in

terms of significantly better performance and effectiveness. Bin-

Unpack is able to complete unpacking within 0.5 second in most

cases, which is substantially smaller than that of existing tools by

one ∼ three orders of magnitude. The hook evasion evaluation

indicates that BinUnpack outperforms well-known sandboxes (e.g.,

CwSandbox [101] and Cuckoo [71]) in terms of better resistance.

Our encouraging results demonstrate that BinUnpack can be de-

ployed to honeypot or sandbox to preprocess large-scale packed

malware, or integrated into online malware scanning service such

as VirusTotal
7
to achieve the optimal malware recognition rate.

Scope and Contributions: Another related obfuscation to binary

packing is code virtualization [85, 102], which represents a comple-

tely different challenge. Although BinUnpack is immune to the case

of unpacking routine virtualization (see Section 8.1.3), recovering

virtualization protected code is out of our scope. In summary, the

contributions of this paper are as follows.

• We propose a new, generic solution to quickly determine the

end of unpacking by capturing the “rebuilt-then-called” beha-

vior. Our approach is free from heavy memory access tracing

caused by multi-layer unpacking, and therefore BinUnpack’s

performance is significantly better than the previous work.

• We design a novel, hybrid kernel-level DLL hijacking techni-

que. We are not aware of any other scientific work on Win-

dows core DLL hijacking. Our design enables BinUnpack to

exhibit more powerful unpacking capability than the existing

work.

• We evaluate BinUnpack extensively with large-scale datasets,

which include almost all of the Windows malware packers

available at present. BinUnpack shows consistently good

results across various packers and potential attacks. A free

online BinUnpack web service is under construction.

2 BACKGROUND AND MOTIVATION
In this section, we first summarize the drawbacks of existing work

when dealing with multi-layer and anti-analysis packers. Then we

present an example to illustrate another pervasive feature among

packers: API call resolution obfuscation and import address table

rebuilding. All of these inspire us to propose our unpacking method.

6
It represents the worst case for all generic unpackers [7].

7
https://www.virustotal.com

2.1 The Status Quo of Generic Unpacking
Existing generic unpacking approaches suffer from high overhead

and lack of anti-analysis resistance. When a unpacking routine

starts running, the procedure of writing to memory and then exe-

cuting the written memory can repeat many times. We borrow

the definition of unpacking layer from Xabier et al. [97]: “a layer
is, intuitively, a set of memory addresses that are executed after
being written by code in another layer”. Their longitudinal study
on 389 unique packers shows that 92.7% of them are multi-layer

packers. Two factors contribute to the challenge of determining

the end of unpacking. First, the “written-then-executed” feature is

just an indication of dynamically generated code but not original

code execution. Second, counter-intuitively, the original code is

not necessarily in the deepest layer. CoDisasm [9] finds 19 out of

total 28 packers have multiple layers. We further evaluate these 19

packers and identify that 4 of them do not present the original code

at the last layer. Figure 1 illustrates such an example: the deepest

layer only contains junk code rather than original code. There-

fore, the unpacking heuristics that captures either the last layer

or the signal of process termination (e.g., “TerminateProcess” or

“ExitProcess” ) will miss the real payload. To follow the unpacking

progress, the traditional approaches have to go through each un-

packing layer via heavy memory access tracing and determine the

presence of OEP with various heuristics. As a result, they typically

impose significantly high runtime overhead and are too expensive

for resource-constrained scenarios.

Generic unpacking utilizes various analysis systems to moni-

tor unpacking progress. However, these analysis systems leak out

many recognizable footprints, and packers can detect them to evade

unpacking. For example, Armadillo will terminate execution in

a debugging setting [21]; PESpin packers perform dynamic inte-

grity check to fingerprint dynamic binary instrumentation envi-

ronment [40]. Although some unpacking tools rely on hardware

virtualization [19] to achieve transparency, the cost is a much hig-

her performance penalty (e.g., 3, 000X slowdown [103]). The default

function of Themida packer applies virtualization obfuscation to its

unpacking routine, making monitoring unpacking progress even

more difficult because of instruction size explosion [63]. Worse still,

some anti-analysis tricks try to nullify the “written-then-executed”

feature of memory pages [60] or attack the heuristics of original

code identification [51]. In our comparative evaluation with other

three recent unpacking tools, no single previous work could cope
with all of the tested packers.

2.2 API Call Resolution
Binary packing technique keeps evolving itself to counter reverse

engineering. But one thing maintains stable; that is, malware pay-

load still needs to interact with Windows OS (via calling Win-

dows APIs) to fulfill diversified malicious intents, such as process

injection [30], C&C communication [26], and document encryp-

tion [43]. As compiler is unaware of DLL API addresses at compile

time, a PE (Portable Executable) file has to resolve DLL API ad-

dresses dynamically, which comes in two major ways: 1) Type I:

standard API resolution, a.k.a. implicit linking [59]; 2) Type II: dy-

namic API resolution, a.k.a. explicit linking [58]. Type I, the most

prevalent way, accesses PE file header’s import address table (IAT)
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& 
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Figure 1: The unpacking process goes through multiple “written-then-executed” layers. The first layer contains anti-analysis
code such as integrity check and anti-debugging, and the deepest layer does not consist of the malware payload but junk code.

to obtain an API address [84]. IAT entries list the function names

or ordinals that need to be imported from a specific DLL. When

a PE file is loaded, Windows loader is responsible for loading and

linking required DLLs, and it also fills in the IAT entries with the

virtual addresses of each imported function. The PE file refers to

IAT by using indirect control flow instructions to call the DLL APIs.

As a contrast, Type II has to make function calls to explicitly load

the DLL and obtain an import function address at run time. The

most convenient way is to explicitly invoke “LoadLibrary”
8
and

“GetProcAddress”
9
. This means at least these two APIs are kept in

IAT for Type II.

There are two exceptions to Type I & II in which IAT is not

required. The first one is that API addresses can be hard-coded

in binary. However, diversified Windows OS versions and address

space layout randomization have put this exception into a dead end.

The second exception happens at shellcode. As shellcode is not dy-

namically loaded by Windows loader but injected into the process

space of victim program at run time, shellcode has to acquire the

needed APIs’ addresses without visiting IAT. Shellcode can first

get the address of kernel32.dll from structured exception handling

(SEH) or process environment block (PEB) structure [12], and it

then searches the addresses of “LoadLibrary” and “GetProcAddress”

from kernel32.dll’s export directory. However, developing compli-

cated malicious behavior using shellcode has many constraints and

lacks compatibility [89]. That is the reason why shellcode is typi-

cally small and target-specific, and it is mainly used in the early

stage of malware infection such as exploiting the vulnerability and

bypassing the protection of data execution prevention. In addition,

there are already mature solutions to prevent shellcode from obtai-

ning the DLL address via SEH and PEB [92]. Therefore, we do not

consider these two corner cases as practical.

2.3 Import Address Table Rebuilding
To complicate reverse engineering, packers obfuscate API call re-

solution by erasing the IAT of original code. Then the attached

unpacking routine will rebuild a new IAT at run time, before resu-

ming the original code execution. Rebuilding IAT means unpacking

routine, like a custom dynamic loader, has to recover the connection

from an API call name to its virtual address. This can be achieved

by explicitly calling the API “LoadLibrary” and “GetProcAddress”

(Type II). Note that a local IAT is attached to unpacking routine

as well, as the unpacking routine itself has to call APIs for various

8
It maps a DLL into a process’s address space during execution.

9
It returns an API call’s virtual address.

purposes, such as detecting debugging/emulation environment and

rebuilding the IAT of original code.

From code obfuscation viewpoint, removing IAT offers many

benefits. First, many Windows APIs are abused for malicious pur-

pose [20, 68, 88]. For example, “WriteProcessMemory” and “Crea-

teRemoteThread” are often used together by malware authors to

complete process injection [30]. Removing payload’s IAT prevents a

deep insight into the high-level semantics of malware. We manually

modify an open source packer so that it does not remove the IAT

of malware payload. The consequence is that another 14 additional

anti-virus scanners are able to recognize this malware. The second

benefit is to impede the reconstruction of a fully functional version

of the original binary. In addition to removing IAT, many advanced

packers go one step further to apply API redirection [39] during IAT

rebuilding. For example, the address in IAT does not directly point

to an API function but another memory region that has a direct

jump to that API. API redirection hinders the perfect reconstruction

of IAT, and therefore the unpacked code cannot function correctly.

Another byproduct of deleting IAT is that it can further reduce the

packed code size [82]. Several previous work has reported such IAT

erasing and rebuilding behavior [17, 44, 82, 86, 97], but our work

focuses on using these common features for generic unpacking.

2.4 Motivating Example
We use a malware sample hupigon.eyf

10
protected by FSG packer

to illustrate the process of IAT rebuilding. Hupigon family was once

notorious for the back doors they left on the compromised machine.

Original hupigon.eyf contains 575 APIs, and it makes indirect calls

to the API names stored in IAT (see Figure 2(a)). For the FSG packed

version, FSG compresses code and data sections, erases the origi-

nal IAT, and attaches an IAT to unpacking routine. As shown in

Figure 2(b), the unpacking routine IAT contains only two API calls

from kernel32.dll: “LoadLibrary” and “GetProcAddress”, which are

capable of rebuilding the IAT. Figure 2(c) is the memory view of

FSG packed version at run time, and it also shows the common

features that BinUnpack relies on. When the control flow arrives

at OEP, the packed code and data sections have been restored, and

the payload IAT, containing the same 575 APIs and their addresses,

is reconstructed as well. Note that the reconstructed payload IAT

is different from the unpacking routine IAT in two ways. 1) As the

functionality of unpacking routine is relatively simple, it typically

has much fewer imported APIs than the reconstructed payload IAT.

2) They reside in different memory regions. Recall that program

10
MD5:09457821763329501273aa4659292401
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(a) Original hupigon.eyf

 (disk view)
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Code Section

    Original Entry Point

   …….
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     …….

Data Section

 IAT Section

kernel32.dll

user32.dll …

(b) Packed hupigon.eyf by FSG 

(disk view)

Enrty Point

Unpacking Routine 

(c) Packed hupigon.eyf at run time 
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Enrty Point

Original Code Section 

   Original Entry Point

     …….
    call [f1]

     …….

Original Data Section 

Original IAT  Section

kernel32.dll

user32.dll …

f1:7C801A28
…

f119: …

Unpacking Routine

    Unpack Original Code;

     ... 

    Rebuild Original IAT;

    Jump to OEP

Unpacking Routine IAT

  

kernel32.dll       
 g1,  

  g2

Total: 575 APIs  

Total: 575 APIs  

Unpacking Routine IAT  

kernel32.dll       g1,  g2

Total: 2 APIs  

Packed Code & Data  

f1: CreatFile 
f2: DeleteFile
…
f119:    …

 
…          
 7C801A28: (offset)
     CreatFile 
 …                 
 …          
 7C801D7B: (offset)
     LoadLibrary 
 …          
 7C80AE30: (offset)
     GetProcAddress 
 …          

kernel32.dll

Control flow

Function reference

Figure 2: FSG packer removes the malware’s original IAT from the packed version. The attached unpacking routine IAT only
contains two APIs: “LoadLibrary” and “GetProcAddress”, and they are enough to rebuild the original IAT.

refers to IAT via indirect calls (e.g., call [f1]). Deliberately over-

lapping the payload IAT to the unpacking routine IAT’s memory

region is particularly challenging, because packers have to perform

binary rewriting on the just recovered payload code and make sure

all related indirect call addresses (e.g.,f1 ∼ f119) are redirected to

the new locations. BinUnpack takes advantage of these differences

to detect the end of unpacking.

3 OVERVIEW
From the packers’ pervasive IAT rebuilding behavior, we uncover

two clues to help us determine the end of unpacking: 1) the recon-

struction of payload IAT happens ahead of the jump to OEP; 2)

at run time, if an API is called through a rebuilt IAT rather than

the unpacking routine IAT, it indicates that malware payload has

been restored. BinUnpack’s key idea is to capture such “rebuilt-
then-called” feature.

Figure 3 shows the architecture of BinUnpack. BinUnpack ex-

tracts the unpacking routine IAT of packed malware via static analy-

sis, and then it monitors the dynamic execution of packed malware.

The core of BinUnpack is “Hook-evasion Resistant API Monitor”. It

monitors API calls, find the related IAT to an API call, and compa-

res the related IAT with the unpacking routine IAT (“Compare” in

Figure 3). If the current related IAT is different from the unpacking

routine IAT, that means the related IAT is rebuilt at run time. Next,

BinUnpack halts the execution of packed malware and traces back

to OEP (“OEP Search”). After that, we dump the memory of cur-

rent process (“Process Dump”) as BinUnpack’s output (“Malware

Payload”), which can be used for further malware analysis. Our

design presents a distinct competitive advantage; that is, BinUnpack

avoids the high runtime overhead caused by monitoring multiple

“written-then-executed” layers. However, several other challenges

are raised when we design BinUnpack’s API monitor with existing

methods [2, 101, 105]. All of them place BinUnpack in a dilemma:

they either can be easily evaded or are unaware of user-level API
semantics. Next section will discuss how we manage to address this

dilemma in a hybrid way.

4 HOOK-EVASION RESISTANT API MONITOR
Another major contribution of BinUnpack is that our API moni-

tor combines the existing two methods to achieve complete DLL

hijacking. We rely on kernel-level hooking (method 1) to inter-

cept an indispensable DLL loading function and load home-made

DLL rather that target DLL (DLL hijacking, method 2). Our de-

sign amplifies the advantages of these two techniques and avoid

their limitations. In addition, BinUnpack integrates several existing

work [42, 87, 90] to defeat possible evasions and attacks.

4.1 API Hooking and Limitations
API hooking intercepts a call to an API function. The normal invoca-

tion flow will be rerouted to a different location where the hooking

function resides. Existing API hooking methods [2, 101, 105] can be

divided into two types: user-level and kernel-level hooking. User-

level API hooking, such as IAT hooking and export address table

(EAT) hooking, works at the user-level of OS and is process-specific.

It has been adopted by many prevalent sandboxes [71, 101] to ex-

tract the user-level API semantics of malware. However, user-level

hooking has to modify the target process space, which can be easily

detected and countered by hook-evasion techniques [53]. Table 1
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Figure 3: The Architecture of BinUnpack.

Table 1: Common user-level API hooking evasions adopted by

packers.

Evasion Type Packers

Stolen code

Asprotect, Pelock, Yoda’s Protector,

Yoda’s Crypter, Enigma, Themida,

Private exe Protector (PEP)

Child process Armadillo, Pespin

Process hollowing

Ransomware custom packer

Crash hooking module

presents the most common user-level API hooking evasions and

representative packers we have encountered in our experiment. We

divide them into three categories.

Stolen Code Stolen code [38, 82] copies some instructions from

an API to an allocated memory in malware process. When a pac-

ked malware attempts to call the API, it first executes the copied

instructions instead; and then the control flow jumps back to the

API instruction which just follows the copied instructions. Stolen

code happens at run time, after DLL has been loaded [82]. As many

user-level API hooking techniques identify their target API calls

by matching the virtual addresses where these APIs are expected

to locate, stolen code will make such API hooking tools miss the

target.

Child Process&ProcessHollowingThese two evasions are used
to hide the presence of a malicious process. Child process means

packed malware forks a child process, in which the malware execu-

tes unpacking routine and payload. User-level API monitoring is

typically process-specific; that is, they only work at a specific pro-

cess where the IAT or EAT is hooked. Some ransomware’s custom

packer has applied a more advanced technique, called “process hol-

lowing” [48]. The effect of process hollowing is unpacking routine

and original code execution will be decoupled into two processes.

Any generic unpacking tool that does not have full control over

multiple processes will be circumvented [44, 76].

Crash Hooking Module Some ransomware’s custom packers

have adopted a powerful anti-hooking technique: crash the hooking

module [41]. The packer tries to create an access violation exception

by arbitrarily calling APIs with invalid arguments. In a non-hooking

environment, Windows OS default exception handlers can handle

such errors, so packed ransomware can run properly. However,

it is quite complicated to develop exception handlers for an API

hooking system, and therefore it will crash when the access viola-

tion exception is raised. Security vendor VMRay [27] in May 2017

reported that the custom packer adopted by Cerber ransomware

can crash all API hooking based sandbox solutions.

In contrast, kernel-level hooking of native API, is more difficult

to be tampered with than user-level hooking, and it also has a global

view over multiple processes. Unfortunately, kernel-level hooking

does not suffice for BinUnpack, because there is no bijective map-

ping between user-level APIs and kernel-level native APIs [5]. Some

user-level APIs such as path-related APIs and DLL management

APIs (e.g., “GetProcAddress”) provide user-level service exclusively.

That means they do not invoke any native API at all. When Bin-

Unpack is searching OEP (see Figure 6), we need to accurately hook

“GetProcAddress” API so that we can limit the OEP search scope.

Kernel-level hooking alone may miss the first API that is invoked

from a rebuilt IAT or render the OEP search inaccurate.

4.2 DLL Hijacking
The limitations of user-level and kernel-level API hooking turn our

attention to another API monitoring method: DLL hijacking [79].

As developers often load a common DLL by its name rather than its

absolute path, DLL hijacking exploits the DLL path search order to

load a custom-made DLL instead of the original DLL
11
. Compared

to API hooking, DLL hijacking is more compatible with the target

process. DLL hijacking withstands the evasion of stolen code. The

reason is DLL hijacking does not modify the target process space,

and the subject process has already loaded the custom-made DLL

into its own space, before API instruction stealing occurs at run time.

Therefore, the effect of stolen code is just like calling the custom-

made API. Besides, DLL hijacking is immune to crash hooking

module attack as it can naturally deliver runtime errors toWindows

OS’s exception handlers. However, given DLL hijacking’s robust

resilience, another problem rears its head.

Microsoft has realized that the default DLL path search order can

be misused to load malicious component, so a more strict restriction

comes up for core systemDLLs such as kernel32.dll and advapi32.dll.

The set of core DLLs and their full paths are explicitly specified

by a particular Registry key [46]. We overcome the challenge of

hijacking Windows core DLL by combining DLL hijacking and

kernel-level hooking.

11
Windows OS’s standard DLL path search order and DLL hijacking example are

shown in Appendix Table 5 and Appendix Figure 9.
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Figure 4: BinUnpack’s kernel-level DLL hijacking.

1 LdrpMapDll()
2 {
3 //initialization code preparing for mapping DLL
4 initialization code here;
5 //map the DLL in the address of "BaseAddress"
6 NTSTATUS St= NtMapViewOfSection(...,∗BaseAddress,...)
7 If(St==STATUS_IMAGE_NOT_AT_BASE)
8 {
9 //the DLL is not at base, relocate it.
10 relocation code here;
11 //initialization code preparing for mapping DLL
12 initialization code here;
13 /∗ map the dll in the address of "BaseAddress"
14 again, the "BaseAddress" may be modified by the
15 previous call of "NtMapViewOfSection" ∗/
16 NtMapViewOfSection(...,∗BaseAddress,...)
17 }
18 }

Figure 5: The interaction between LdrpMapDll and NtMap-
ViewOfSection. “BaseAddress” is the pointer to a base ad-
dress where the DLL is mapped to.

4.3 Kernel-level DLL Hijacking
StandardDLL loading ismainly bymeans of calling “LoadLibrary” [46,

61], including implicit linking [59] and most cases of explicit lin-

king [58]. This fact inspires us to bypass Windows path search

order restriction. Particularly, we hook “LoadLibrary” and replace

the core DLL with our custom-made DLL to achieve the goal of

hijacking. As user-level API hooking does not resist to evasions,

we switch to kernel-level hooking to intercept “LoadLibrary”. We

reverse-engineer Windows kernel with WinDbg [80] and find out a

call chain from “LoadLibrary” to its related native API: “NtMapVie-

wOfSection” in ntoskrnl.exe (the call chain is shown in Appendix

Figure 10). The last user-level API before this call chain goes into

kernel is “NtMapViewOfSection” function in ntdll.dll. “NtMapVie-

wOfSection” in ntoskrnl.exe is the native API corresponding to “Nt-

MapViewOfSection” in ntdll.dll. “NtMapViewOfSection” in ntdll.dll

only forward all its parameters to “NtMapViewOfSection” in ntos-

krnl.exe. Thus, we can use kernel-level hooking of “NtMapViewOf-

Section” in ntoskrnl.exe to intercept the “NtMapViewOfSection” in

ntdll.dll. Figure 5 shows how “LdrpMapDll” interacts with “NtMap-

ViewOfSection” in ntdll.dll. Note that “LdrpMapDll” calls “NtMap-

ViewOfSection” twice at most. The first time happens at line 6. If

the return value of this call is “STATUS_IMAGE_NOT_AT_BASE”,

it indicates the DLL has to be relocated to new memory space, and

“NtMapViewOfSection” will be invoked again at line 16. The key of

our method is to intercept the “NtMapViewOfSection” at line 6. And

then, we redirect “*BaseAddress” to the memory loading address

of our custom-made DLL. Also, we enforce “NtMapViewOfSection”

returning “STATUS_IMAGE_NOT_AT_BASE” (line 7). In this way,

the code from line 8 to 17 are activated, and our custom-made DLL

will be loaded eventually. Appendix Algorithm 2 shows the detailed

algorithm of loading custom-made DLL.

Figure 4 illustrates how we hijack standard DLL loading. We use

the kernel-level hooking to intercept the original DLL loading flow

and hijack the target DLL (including core DLL) with our custom-

made DLL. “MyNtMapViewOfSection” intercepts the original con-

trol flow and maps custom-made DLL to memory. The monitor

code in custom-made DLL conducts rebuilt IAT identification, OEP

search, and process dump if necessary. If the IAT is not rebuilt at

run time, the monitor code will forward the control flow to the real

API in target DLL. Compared to other API hooking methods, our

approach has many advantages such as being compatible with the

target process and aware of user-level API semantics. These bene-

fits enable BinUnpack to reveal better resilience to the common

hook evasions adopted by packers (see Table 1).

4.4 Non-Standard Explicit Linking
We have to consider the non-standard implementations of expli-

cit linking, because malware authors have already adopted them

to evade the hooking of “LoadLibrary”. The first way is to re-

implement the functionality of “LoadLibrary” by calling “Crea-

teFileMapping” and “MapViewOfFile” [57]. However, this custom

loader still eventually invokes “NtMapViewOfSection” to load DLL.

Our kernel-level hooking of “NtMapViewOfSection” is capable of
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dealing with this case. Another recent work, Stealth Loader [39],

avoids the use of file-map APIs such as “CreateFileMapping” via

reflective DLL injection technique [22]. It calls “CreateFile”, “Re-

adFile”, and “VirtualAlloc” to map a DLL into non-file-mapped

memory at the expense of large memory footprint. This means

Stealth Loader does not go through “NtMapViewOfSection” at all.

However, Stealth Loader’s trace is not invisible. For example, it

calls “CreateFile (“kernel32.dll”)” to open a DLL before it allocates

virtual memory for the DLL. We captures this characteristic feature

by kernel-level hooking of “NtCreateFile” to open our home-made

DLL. In this way, we can monitor the APIs loaded by Stealth Loader.

5 IAT COMPARISON
As shown in Figure 4, the custom-made DLL in BinUnpack is used to

mimic the target DLL we want to hijack. We automatically generate

the custom-made DLL from the target one and attach the monitor

code to each custom API. Algorithm 1 uses the “DeleteFile” in

kernel32.dll as an example to show how the custom-made DLL

works. We follow the similar approach with QuietRIATT [78] to

get current IAT using hooked DLL calls (line 6). The key idea is to

find indirect call pattern via stack backtrace [24]. Line 7 compares

two IATs in terms of different memory locations or contents.

One complicated case to IAT comparison is that an attacker

could apply multiple packer combinations. That is, the innermost

packed code and unpacking routine are further packed by another

packer. Similarly, the IAT of inner unpacking routine has to be

first erased and rebuilt later. In this case, we will see the behaviors

of multiple phases “rebuilt-then-called”. Therefore, we add a new

global variable “lastIAT” in Algorithm 1 to represent the last rebuilt

IAT. The initial value of “lastIAT” is the unpacking routine IAT of

the outermost packer (line 2–4). If “currentIAT” is different from

“lastIAT”, it indicates there is a new phase of “rebuilt-then-called”.

Otherwise we forward the execution flow to the original API to

continue the execution of unpacking routine (line 14). Following

line 7, we perform backtrack search for OEP (line 8). If we find

OEP (line 9), we will first restore the unpacked code protected by

this packer (line 10) and then update “lastIAT” (line 11) for the

next round comparison. Following this style, Algorithm 1 is able to

recover the packed code protected by each packer and finally get

the original malware payload. In our evaluation, handling multiple

packer combinations only leaves little impact on BinUnpack’s per-

formance, but it imposes significant performance degradations on

traditional generic unpacking tools (see Table 3).

6 OEP SEARCH & PROCESS DUMP
The original entry point (OEP) is the first instruction of the resto-

red code. A wrong OEP will mislead a disassembler to produce

incorrect instruction. Although the previous work has proposed

many effective heuristics to find the existence of OEP such as stan-

dard compiler signature [36], dangerous API call [28], cross-section

jump [76], and yara rules [55], they still suffer from very large OEP

search space. Recall that the reconstruction of payload IAT comple-

tes before the recovered payload resumes execution. We can utilize

the API calls respectively from unpacking routine and payload to

narrow down the OEP search space. As shown in Figure 6, we

Algorithm 1 Custom-made API (MyDeleteFile)

lpFileName: The name of the file to be deleted.

lastIAT : A global variable representing the last rebuilt IAT.

1: function MyDeleteFile(lpFileName)
2: if lastIAT = ∅ then
3: routineIAT ← GetUnpackingRoutineIAT()

4: lastIAT ← routineIAT
5: end if
6: currentIAT ← GetCurrentIAT()

7: if currentIAT , lastIAT then // IAT Comparison
8: OEP ← BacktrackOEP()

9: if OEP , ∅ then
10: ProcessDump()

11: lastIAT ← currentIAT
12: end if
13: end if
14: return DeleteFile(lpFileName)

15: end function

Rebuild Payload IAT:

 hModule=Loadlibrary (“kernel32.dll” );

   GetProcAddress (hModule,API1  );

     GetProcAddress (hModule,API2  );

       ……

         GetProcAddress (hModule,APIn  );

T1: The last “GetProcAddress” call T2: The first  API call 

OEP

Jump to 

OEP

Timeline

Payload Execution

Multi-layer 

Unpacking

Figure 6: API monitoring limits the search scope of OEP.
Kernel-level hooking alone will miss the checkpoint “T1”.

first find the checkpoint for the last “GetProcAddress” used to re-

build the payload’s IAT (“T1” in Figure 6), and then we identify the

checkpoint for the first API call from the payload (“T2”). Obviously,

the memory search scope of OEP is limited by the upper bound

“T1” and the lower bound “T2”. Next BinUnpack backtracks from

“T2” to ‘T1” to search OEP using the same heuristics as Arancino

unpacker [76]. Our approach can reduce the possible OEP search

scope remarkably. For example, when unpacking the hupigon.eyf

protected by Armadillo, PinDemonium [55] has to search as much

as 21, 548 instructions before locating OEP. By contrast, BinUnpack

only goes through 19 instructions. In our large-scale evaluation,

the maximum number of instructions from “T2” to OEP is 168, and

the average value is 32.

Home-Made API Implementation Like the custom loader we

have discussed in Section 4.4, malware authors can also implement

the functionality of “GetProcAddress” by searching DLL module’s

export directory [57]. In this way, hooking “GetProcAddress” will

miss the checkpoint “T1”. As “GetProcAddress” does not invoke

any native API, kernel-level hooking does not work either. We

adopt existing work in scalable and obfuscation-resilient binary li-

brary function matching, BinShape [87], to fast identify the specific

memory patters of API custom implementation. BinShape deri-

ves heterogeneous features to represent library function, covering

control flow graph, instruction-level, and statistical features. The

detailed evaluation data is shown in Table 7.
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Figure 7: The possible evasions against “rebuilt-then-called”
behavior.

Many packers also adopt anti-dumping tricks to prevent obtai-

ning unpacked code from memory. One common way is to modify

the access attribute of PE head in memory to “NO_ACCESS”. As a

result, the dumping tools will crash when access the PE head. Bin-

Unpack relies on the state-of-the-art process dump tool, Scylla [1].

In our evaluation, Scylla achieves the optimal results when hand-

ling anti-dumping techniques. With the original payload produced

by process dump, applying further malware code analysis such as

binary code disassembly [9, 45], binary diffing [23, 63], and large-

scale malware clustering/lineage [29, 32] becomes straightforward.

7 POSSIBLE ATTACKS AND
COUNTERMEASURES

Although BinUnpack is conceptually simple, we show in Section 8

that it is able to recover the original code with very high accuracy

and efficiency. Even so, we have to consider how a skilled attacker

could circumvent BinUnpack once our approach is known. This

section discusses possible attacks and our countermeasures.

7.1 Attacks to “Rebuilt-then-Called”
The key idea of our approach is to quickly determine the end of

unpacking by capturing “rebuilt-then-called” behavior. Figure 7

shows three possible ways to evade/attack this key feature.

Malware with no IAT (Evasion I in Figure 7) In Section 2.2, we

have discussed two exceptions that malware can have no IAT and

their practical constraints. Developing malware samples with hard-

coded API addresses or shellcode can hinder their executions and

propagations on diverse victim machines. Therefore, we consider

these two corner cases too unreliable to be a real threat.

Fake Rebuilt IAT and Fake API Call Like the multiple “written-

then-executed” layers in a single packer, an intuitive attack to Bin-

Unpack is also generating multiple phases of “rebuilt-then-called”.

For example, a single packer can rebuilt a fake IAT and call APIs

from it (Evasion II in Figure 7). Similarly, after rebuilding the origi-

nal IAT, the packer can invoke a fake API call before control flow

jumps back to OEP (Evasion III in Figure 7). Note that both Evasion

II and Evasion III can only trigger BinUnpack searching OEP but

no process dump, because no OEP will be detected in these two

evasions (see Algorithm 1). As BinUnpack’s OEP search is efficient

(see Section 6), limited times of Evasion II and III do not have much

of an impact on BinUnpack’s performance. However, a determi-

ned attacker can perform a Denial-of-Service (DoS) attack; that is,

performing many iterations of Evasion II & Evasion III.

We do not treat this extreme case as a hard limit. Compared to

multiple “written-then-executed” layers, multiple phases of “rebuilt-

then-called” will impose dramatically large overhead to packed

malware itself, because API calls are much more expensive than the

read and write instructions. To evaluate the impact of DoS attacks to

BinUnpack, we have simulated Evasion II & Evasion III in the open-

source UPX packer. As shown in Table 2, the BinUnpack’s overall

running time is pretty small when the iterations of Evasion II & III

are less than 10
6
. When the iteration number reaches 10

9
times, the

DoS-UPXwill introduce as much as 10
6
X additional slowdown, and

BinUnpack will be occupied by OEP search. To proactively mitigate

this possible attack, we have applied an advanced bioinformatics-

inspired system call sequence alignment, MalGene [42] to bypassing

fake API calls in two runs. Particulary, in the first run, we only

enable BinUnpack’s API monitor function and MalGene so that

MalGene can identify the scope of Evasion II and Evasion III. In

the second run, we only enable BinUnpack’s unpacking function

when the current API is not in the scope of Evasion II or Evasion III.

In this way, for the extreme case of 10
9
iterations, we can reduce

BinUnpack’s running time to less than 158 minutes.

7.2 Attacks to Kernel-level DLL Hijacking
As the core of BinUnpack’s API monitor is kernel-level dll hijacking,

this section discusses possible attacks to this component.

Kernel-level Hooking Detection It has become much harder for

malware to be loaded into the kernel space and defeat BinUnpack’s

API monitoring. Since Windows 64-bit Vista released in 2007, Mi-

crosoft has employed a new security mechanism, called “Mandatory

Driver Signing”, to prevent the OS kernel hacked by malware [75].

“Mandatory Driver Signing” requires that all kernel-mode drivers

to be digitally signed to verify code integrity.

DLL Integrity Check Another possible evasion is to check the

integrity of a DLL. As Microsoft’s DLLs such as kernel32.dll are

publicly available, the packer could calculate kernel32.dll’s hash

value offline and compare with the hash value of the dll in memory

at run time. Since BinUnpack has substituted the kernel32.dll at

load-time with our custom-made DLL, whose hash value is different

from the original one. However, the released Windows OS has too

many different versions, and verifying all possible hashes is not

a trivial task for attackers either. Nevertheless, we have extended

BinUnpack with a memory subversion technique [25], Shadow

Walker rootkit [90], to bypass DLL integrity checking. The basic

idea is to forward the data access of the custom-made DLL to the

target DLL and the code access of the custom-made DLL to itself.

Therefore, the hash value used in integrity check is calculated from

the target DLL instead of the custom-made DLL.

8 EVALUATION
We collect total 271, 095 malware samples from three different

malware repositories: VX Heaven
12
, VirusShare

13
, and VirusTotal.

These malware samples cover major malware categories such as

12
http://vxheaven.org/

13
http://virusshare.com/
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Table 2: Running time (seconds) of Evasion II & Evasion III DoS attacks. They have relatively small impact on BinUnpack.

Sample No BinUnpack (s)

BinUnpack (s)

IATComparison OEPSearch Dump Total Relative Slowdown

UPX 0.12 2.1×10−5 3.5×10−6 3.1×10−2 3.1×10−2 25.8%

UPX+(Evasion II & III)×103 0.24 2.3×10−3 7.4×10−3 3.1×10−2 4.1×10−2 17.1%

UPX+(Evasion II & III)×106 122 2.2 7.3 3.1×10−2 9.5 7.9%

UPX+(Evasion II & III)×109 122,472 2,231 7,264 3.1×10−2 9,495 7.8%

backdoor, worm, trojan, and virus, including now-infamous ran-

somware families. The active time of these samples ranges from

2008 to 2018. As far as we know, our work is the first one to evaluate

generic binary unpacking on such a scale. Our testbed is a consu-

mer grade laptop with an Intel Core i3-36100 processor (Quad Core,

3.70GHz) and 8GB memory, running Windows 7. We have used pac-

ker signature matching tool Exeinfo PE
14

and PEiD
15

to rule out the

non-packed samples and the ones that are only protected by code

virtualization, which is out of BinUnpack’s coverage. Eventually,

we obtained 238, 835 packed malware binaries. 75.8% of them are

from known packers, and the left (24.2%) are protected by unknown

packers. We also find that custom packers have been quite common

among new-generation malware such as ransomware.

8.1 Comparative Evaluation
We perform comparative evaluation to accurately evaluate Bin-

Unpack’s effectiveness and performance with the malware samples

that we have ground truth. That is, we either have their source

code or we are able to manually verify the unpacking result. Table 3

shows the results on a set of packed versions of our motivating

example—hupigon.eyf. This experiment represents a typical sce-

nario that malware authors generate new variants by applying

different packers. They may select the optimal one that achieves

the best evasion effect to propagate.

The first column of Table 3 lists all of the packers we have tested,

including known packers and packer combinations. The second

column shows “the number of layers/original code layer” for these

packers.We can see that most of the packers are multi-layer packers,

and some packers do not reveal the original code in the deepest

layer (the number in bold). For example, ACProtect packer has the

most 216 layers, but the original code locates at the second layer.

The numbers in the third column represent API numbers in the

unpacking routine IAT, which confirms that erasing the payload

IAT is very common for packers. All of these numbers are less than

the number of hupigon.eyf’s imported APIs (575), and many packer

IATs have only two APIs: “LoadLibrary” and “GetProcAddress”. The

fourth column lists the common evasion types applied by these

packers. Hupigon.eyf belongs to a large family of backdoor Trojan,

and their main function is to form a botnet by connecting a number

of victimized machines. Since the first detection of Hupigon goes

back to 9 years ago
16
, we believe most anti-malware scanners are

able to recognize it. We send the hupigon.eyf’s no-packer version

to VirusTotal, and there are total 36 anti-virus products correctly

label our submission as “hupigon”. Therefore, we treat 36 as the

optimal anti-malware scanning result.

14
http://exeinfo.atwebpages.com/

15
https://www.aldeid.com/wiki/PEiD

16
https://en.wikipedia.org/wiki/Backdoor:Win32.Hupigon

8.1.1 Multi-layer Packers. These packers are all single packer but
with multiple “written-then-executed” layers. Column 5 shows that

these packers can circumvent many anti-virus products. Although

some advanced anti-virus engines have already embedded a sand-

box for generic unpacking [34], there is no single one that could
cope with all of the packed samples in Table 3. Column 6 presents

the VirusTotal results for the four unpacking tool outputs, and

only BinUnpack’s numbers are very close to the optimal value (36).

Compared to other tools, BinUnpack significantly improves the

accuracy of anti-virus scanning. For the packers that do not reveal

the original code in the deepest layer (e.g., Enigma, SoftwarePas-

sport, Armadillo, and ACProtect), some VirusTotal results of the

unpacked code are 0. The reason is these unpackers do not return

the right layer containing the original code.

8.1.2 Packer Combinations. With different packers applied on the

same original code repeatedly, generic unpacking becomes more

difficult. On the other side, the packed code generated by some

packers may not be further packed by other ones [28]. After trying

all possible combinations, we find several successful cases. Compa-

red to a single packer, packer combinations are indeed more likely

to evade anti-malware scanning. VirusTotal’s detection number

for these packer combinations is no more than 14. As our design

has already considered the threat of packer combinations (see Al-

gorithm 1), BinUnpack can efficiently extract original code from

multi-packer protected version.

8.1.3 Themida. Themida is a sophisticated commercial packer, and

it is also widely used by malware authors [85, 102]. As shown in

Column 5, the detection rate to Themida protected malware is ra-

ther low. We use Themida to evaluate two more complicated cases.

First, we apply Themida’s default binary packing function to hu-

pigon.eyf’s binary code. The distinct feature of Themida packer is

that the unpacking routine code is further protected by virtualiza-

tion obfuscation. In this case, one unpacking routine instruction

is replaced by several bytecode, and the attached virtualization

engine will simulate these bytecode at run time. Under unpacking

routine virtualization, tracing “written-then-executed” instructions

will become extremely time-consuming [63] . Unlike the previous

work, BinUnpack neatly sidesteps heavymemory access tracing and

avoids the high overhead caused by code virtualization execution.

Second, as the source code of hupigon is available, we can enable

Themida’s optional function “EncodeMacro”. “EncodeMacro” allow

users to mark a region of source code to be encrypted. When the

encrypted code region is to be executed, Themida will first decrypt

the code inside the macro, execute it, and then encrypt it again.

Themida with “Encode Macro” option enabled can be taken as a

partial code revealing packer, which represents the worst case for

all generic unpackers [7, 86, 97] because only a portion of original
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Table 3: Comparative evaluation with ground truth dataset. Evasion types: 1) Anti-Debugging; 2) Anti-VM (Virtual Machine
& System Emulator); 3) Anti-DBI (Dynamic Binary Instrumentation); 4) Anti-Hooking. The last two columns’s order is (CoDi-
sasm, PINdemonium, Arancino, BinUnpack).

Packers #Layers #APIs Evasions

VirusTotal Result Performance (s)

Packed Unpacked (CoDisasm, PinDemonium, Arancino, BinUnpack)

hupigon.eyf (no packer) 575 36

Multi-layer packers

NsPack 2/2 28 19 0, 8, 8, 35 T, 312, 343, 0.15

nPack 2/2 5 22 0, 26, 26, 36 E, 17, 21, 0.09

FSG 2/2 2 24 0, 21, 21, 36 T, 27, 42, 0.10

UPX 2/2 5 30 21, 26, 26, 36 3, 16, 23, 0.13

eXPressor 2/2 12 22 0, 24, 24, 35 T, 9, 15, 0.11

RLPack 2/2 6 21 0, 6, 6, 35 T, 10, 25, 0.12

Petite 3/3 30 21 27, 29, 29, 36 2, 71, 100, 0.11

Aspack 3/3 6 31 0, 21, 21, 36 T, 80, 105, 0.09

MoleBox 3/3 144 1 22 0, 32, 32, 36 T, 64, 82, 0.17

Asprotect 3/3 6 1,4 20 0, 19, 19, 34 T, 162, 180, 0.21

WinUpack 3/3 2 22 10, 19, 19, 33 9, 13, 25, 0.09

FishPacker 3/3 2 23 0, 21, 21, 32 T, 69, 82, 0.10

KBys 3/3 4 23 0, 8, 8, 31 T, 83, 105, 0.15

PECompact 4/4 4 24 0, 12, 12, 36 T, 13, 20, 0.11

Yoda’s Crypter 4/4 2 1,4 19 14, 0, 0, 35 7, E, T, 0.16

MEW 4/4 2 24 0, 21, 21, 34 T, 72, 105, 0.14

ORiEN 4/4 4 25 23, 26, 26, 35 6, 56, 64, 0.13

PEP 4/4 310 1,4 12 0, 0, 0, 28 T, T, T, 0.20

Enigma 5/4 18 1,2,4 11 0, 0, 0, 34 T, E, T, 0.17

ZProtect 5/5 20 18 0, 9, 9, 31 T, 34, 56, 0.17

Yoda’s Protector 6/6 2 1,3,4 21 19, 0, 0, 35 8, E, T, 0.11

Obsidium 6/6 2 1,3 13 0, 6, 6, 31 T, 168, 205, 0.15

SoftwarePassport 7/6 242 1,2 21 0, 0, 0, 33 T, T, T, 0.36

Pelock 15/15 22 1,4 10 0, 0, 11, 35 T, E, 256, 0.32

Telock 18/18 2 1,3 21 15, 0, 5, 32 13, E, 105, 0.18

Pespin 80/80 4 1,3 16 0, 0, 18, 32 E, E, 436, 0.14

Armadillo 165/163 232 1,2,4 13 0, 0, 0, 28 T, T, T, 0.38

ACProtect 216/2 5 1,3 9 0, 0, 0, 31 E, E, 256, 0.29

Packer combinations

NsPack+Aspack 5/5 28 10 0, 7, 7, 34 T, 380, 421, 0.17

RLPack+MoleBox 5/5 6 1 8 0, 5, 5, 33 T, 71, 101, 0.25

nPack+PECompact 6/6 5 9 0, 8, 8, 34 E, 24, 38, 0.15

eXPressor+MoleBox 5/5 12 1 13 0, 23, 23, 33 T, 68, 91, 0.23

RLPack+Aspack 5/5 6 11 0, 5, 5, 34 T, 83, 126, 0.15

FishPacker+PECompact 7/7 2 13 0, 7, 7, 30 T, 79, 94, 0.15

FishPacker+Aspack 6/6 2 14 0, 18, 18, 30 T, 141, 181, 0.13

FishPacker+PEP 7/7 2 1,4 11 0, 0, 0, 26 T, T, T, 0.25

Themida

Unpacking routine virtualization 106/105 2 1,2,4 8 0, 0, 0, 31 T, E, E, 0.75

Partial code revealing 107/105 2 1,2,4 6 0, 0, 0, 30 T, E, E, 0.85

1
“T”(Timeout) means that the unpacking tool running time exceeds 1, 800 seconds or 120 seconds for CoDisasm.

2
“E”(Exception) means that the unpacking tools raise exceptions and then exit.

code is revealed during any given unpacking time window. Our

countermeasure is to dump a continuous series of process memory

and later reassemble them as a single consistent code image. We

enable Themida’s “EncodeMacro” option to protect major functions

of hupigon.eyf. This means we can only restore one function’s

binary code each time. As shown in the last row, BinUnpack is

able to extract the original code successfully and greatly increase

malware detection rate. However, in practice, such partial code

revealing packer is rare because of no source code available, the

unreliability, and high runtime overhead [7].

8.1.4 Performance Comparison. We also compare BinUnpack’s

performance with other three representative generic unpacking

tools: CoDisasm [9], PinDemonium [55], and Arancino [76]. All

of them rely on Pin [52] to monitor “written-then-executed” in-

structions [55, 76] or memory pages [9]. We borrow “CoDisasm”,

“PinDemonium”, and “Arancino” to represent the generic unpackers

developed by the related work [9, 55, 76], respectively. Although

the purposes of these three papers look different (e.g., binary disas-

sembly [9] or defeating anti-instrumentation evasions [76]), generic

unpacking is either an indispensable preprocess or an appealing

application. BinUnpack’s two major advantages are avoiding tra-

cing “written-then-executed” layers and resilient to anti-analysis

tricks. All of these three unpackers are very representative in these

two respects. Like BinUnpack, PinDemonium also relies on the

state-of-the-art process dump tool, Scylla [1], to reconstruct the

payload IAT. Arancino is an extension of PinDemonium
17
, and it is

the latest work that is able to defeat anti-DBI-equipped packers.

In our evaluation, we set the threshold of runtime execution

as 1, 800 seconds
18
. When an unpacking tool exceeds this thres-

hold, we will stop the execution and mark the performance data

as “Timeout”. Besides, we also find many cases that the unpacking

tools raise exceptions and then exit, and therefore we mark them

as “Exception”. The last column of Table 3 shows that BinUnpack

succeeds in all cases, and the running time ranges from 0.09 to 0.85

seconds with an average value 0.20. The worst case comes from

unpacking partial code revealing packer. In contrast, the overhead

of other three tools is much larger than BinUnpack by one ∼ three
orders of magnitude. In addition, all of them fail in many cases with

either “Timeout” or “Exception”. Especially, they fail in most packer

combination samples and Themida versions. We attribute their fai-

lures to the lack of anti-analysis resistance. For example, PESpin and

ACProtect packers can fingerprint Pin environment [40] and crash

the execution of CoDisasm and PinDemonium. Arancino [76] is

an extension of PinDemonium [55] to defeat anti-instrumentation-

equipped packers at the cost of much more overhead.

17
They are developed by the same team.

18
CoDisasm provides a server to generate traces and memory dumps. The server’s

“Timeout” threshold is only 120 seconds.
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For some other representative generic unpacking tools, as many

of them are either unavailable or obsolete, we report the overhead

mentioned in their papers [28, 36, 56, 83, 86]. Note that all of them

only evaluated limited packers and no one tested packer combina-

tions or the partial code revealing packer. Whether they can still

defeat current sophisticated packers is unclear. The overhead of

PolyUnpack [83] is about 150 seconds on average; The average

unpacking time of OmniUnpack [56] on 12 packers is 5.3 seconds;

Renovo [36] incurs at least 8X runtime slowdown when unpacking

15 packers; Eureka [86] tested 15 packers and could unpack “more

than 90 binaries per hour”.

8.1.5 Top Wanted Malware, Packed Benign Programs, and NSIS
Packer. In addition to hupigon.eyf, we also evaluate top wanted

malware, packed web browsers, and custom packers adopted by

ransomware. The top wanted malware samples are from the secu-

rity vendor Check Point’s top10 list from May 2017 [95] to March

2018 [96], and we manage to collect their binary code of no-packer

versions. The second column of Table 4 shows the number of va-

rious packers applied to each sample. We find that not all of the

packers list in the Table 3 are compatible with top wanted malware

and benign browsers. The Column 3∼ 5 list the average VirusTotal

scanning results to no-packer, packed, and unpacked versions, re-

spectively. Column 6 shows the number of successful unpacking.

We consider an unpacking as success if it can locate OEP and extract

the original code correctly. The last column reports the average

running time for successfully unpacking cases. For the experiments

of packed top wanted malware, BinUnpack’s results are similar to

Table 3 with two ∼ three orders of magnitude performance boost

and 100% success rate.

In the packed benign program experiments with three popu-

lar web browsers, we find that more that 20 anti-virus scanners

generate false alarms, and all of the other three unpacking tools

fail to extract the original code. BinUnpack’s outputs reduce the

false positives of anti-virus scanners to zero. In the last set of ex-

periments with custom packers adopted by ransomware, the third

column data is not available because we do not have their no-packer

versions. We find all of these ransomware samples customize NSIS

installer as packers. NSIS (Nullsoft Scriptable Install System) is a

script-driven installer to create a install package. As a lot of legiti-

mate softwares also use NSIS as their installers, anti-virus scanners

would produce large false positives if they take NSIS as malware

signature. The unique feature of the NSIS packer protected mal-

ware is that it never places the malicious executables on the file

system (a.k.a Fileless Malware [106]), which can bypass many mal-

ware static analysis approaches. Appendix Figure 11 shows the

typical attacking procedure of NSIS packed ransomware. To further

complicate the generic unpacking, Cerber customizes NSIS pac-

kers by adding evasion techniques such as process hollowing and

crash hooking module. Nonetheless, we find that the NSIS packed

ransomware still presents the behavior of “rebuilt-then-called”, so

BinUnpack is able to extract the original payload efficiently.

8.2 Impact on Benign Program Execution
We also study the overhead BinUnpack introduces when working

with benign programs (no-packer version). We compare the execu-

tion time of benign programs with BinUnpack disabled and enabled.

Table 4: Comparative evaluation summary with more sam-
ples. The data in the last three columns is represented as
(CoDisasm, PinDemonium, Arancino, BinUnpack).

Sample #Packers

VirusTotal (Avg.)

#Success Peformance (Avg.)

No-packer Packed Unpacked

Top wanted

Locky 32 38 15 3, 11, 13, 35 5, 18, 21, 32 101, 488, 512, 0.21

Conficker 35 47 25 3, 10, 13, 45 6, 19, 23, 35 105, 532, 568, 0.28

Zeus 36 40 18 3, 11, 15, 37 7, 21, 24, 36 92, 410, 451, 0.24

Andromeda 33 35 11 3, 11, 14, 31 6, 18, 22, 33 90, 380, 446, 0.21

Necurs 31 37 13 3, 10, 13, 33 6, 18, 21, 31 76, 364, 395, 0.17

GlobeImposter 34 48 24 3, 11, 14, 45 7, 19, 23, 34 93, 415, 450, 0.20

Pykspa 35 42 19 2, 10, 12, 37 5, 18, 21, 35 93, 423, 467, 0.21

Hancitor 34 46 22 3, 12, 15, 42 7, 20, 24, 34 79, 358, 394, 0.18

Nivdort 37 30 11 3, 11, 14, 26 8, 22, 25, 37 92, 405, 462, 0.20

WannaCry 32 56 30 4, 10, 13, 54 6, 17, 20, 32 120, 523, 576, 0.26

Kelihos 38 32 12 3, 11, 14, 28 7, 22, 26, 38 91, 401, 452, 0.22

Jaff 33 43 19 3, 10, 12, 40 6, 18, 21, 33 92, 422, 473, 0.20

Cryptowall 31 44 22 3, 10, 12, 41 5, 17, 19, 31 114, 434, 482, 0.25

Sality 35 43 19 3, 11, 13, 40 7, 20, 24, 35 95, 461, 514, 0.21

Fareit 36 46 17 4, 13, 16, 43 9, 23, 27, 36 94, 412, 452, 0.20

Packed browsers

IE 9 0 23 –, –, –, 0 0, 0, 0, 9 E, T, T, 0.29

FireFox 5 0 20 –, –, –, 0 0, 0, 0, 5 E, T, T, 0.31

Chrome 8 0 22 –, –, –, 0 0, 0, 0, 8 E, E, T, 0.33

Custom packers

CryptoLocker 1 – 34 –, –, –, 44 0, 0, 0, 1 T, E, E, 0.23

CTB-Locker 1 – 31 –, –, –, 41 0, 0, 0, 1 T, E, E, 0.22

Teerac 1 – 21 –, –, –, 32 0, 0, 0, 1 T, T, T, 0.19

Crysis 1 – 22 –, –, –, 29 0, 0, 0, 1 T, T, T, 0.21

Cerber 1 – 36 –, –, –, 44 0, 0, 0, 1 E, E, E, 0.25

1
The meaning of “T”(Timeout) and “E”(Exception) are as the same as Table 3, and “–” means N/A.

The test set includes common Windows applications (e.g., tasklist,

winrar, and WinPcap) and prevalent web browsers (e.g., IE, Firefox,

and Chrome). To evaluate the browsers, we cache the top 10 bench-

mark sites ranked by Alexa
19
. We insert the JavaScript “getTime()”

routine to the start and the end of the page, and then compute

the delta between these two time. The delta shows us how long

it takes to load a page. As shown in Appendix Table 6, the additi-

onal overhead caused by BinUnpack mainly comes from the IAT

comparison. If the result of IAT comparison is true, BinUnpack will

not perform both OEP search and process dump. The relative slow-

down caused by BinUnpack ranges from 0.01% to 1.48%. The worst

case comes from Chrome browser, which heavily uses API calls

(e.g.,“WriteFile”). So BinUnpack has to perform IAT comparison

frequently. Overall, BinUnpack only brings marginal overhead to

benign program execution.

8.3 Hook-evasion Resistance Evaluation
In addition to high runtime overhead, the lack of anti-analysis

resistance is another reason to limit the application of generic un-

packing. In this section, we evaluate the capacity of BinUnpack’s

hook-evasion resistance with a classical user-level API monitor

(Detours [33]) and two prevalent sandboxes that provide API hook-

ing service (CWSandbox [101] and Cuckoo Sandbox [71]). The test

data contains the known packers from Table 1, which lists com-

mon hook evasions adopted by packers. Besides, we modify the

source code of UPX to represent another three evasions: Custom

Loader [57], Stealth Loader [39], and DLL integrity check. Custom

Loader [57] implements the functionality of “LoadLibrary” and

“GetProcAddress”, which avoids explicitly calling these two APIs.

Stealth Loader [39] avoids calling “NtMapViewOfSection” and maps

a DLL into non-file-mapped memory. DLL integrity check is used

19
http://www.alexa.com
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to detect whether the dll loaded in memory is modified. Fortunately,

BinUnpack has countermeasures to defeat all of these evasions.

The evaluation results are summarized in Appendix Table 7. For

child process and process hollowing evasions, CWSandbox and

Cuckoo can deal with them because these sandboxes recursively

hook APIs in child processes. But Detours is process-specific, and it

needs to inject code into the target process space. Except BinUnpack,

the left API monitors identify target APIs by matching the virtual

addresses where these APIs are expected to locate. Therefore, stolen

code technique can make them miss the target. As Detours and

the two sandboxes do not implement exception handlers perfectly,

crash hooking module is particularly effective to impede all of them.

In addition, both Custom Loader [57] and Stealth Loader [39] are

able to circumvent user-level API hooking. By contrast, the design

of kernel-level DLL hijacking and fast binary function matching

technique [87] enable BinUnpack to resist to these stealthy hook

evasions. Furthermore, only BinUnpack is resilient to DLL inte-

grity check. Other three API monitors also have to patch the DLL

loaded in memory. Section 7.2 has discussed the countermeasure

we have taken to bypass DLL integrity checking; that is, we adopt

Shadow Walker rootkit [90] to forward the data access of custom

DLL to the target DLL. Strong hook-evasion resistance explains

why BinUnpack exhibits much broader unpacking scope, and our

approach also provides a new way to develop resilient API monitor

in sandbox.

8.4 Unpacking Wild Packed Malware
The high performance of BinUnpack enables us to perform a large-

scale evaluation. We test BinUnpack on 238, 835 packed malware

samples we have collected. BinUnpack succeeds in 97.3% of samples,

and each unpacking can be completed within 0.5 second for most

cases. The reason for the left 2.7% failures is either the binary code

is not executable or the unpacking routine exits early. After further

investigation, we find some custom packers attempt to detect the

involvement of human by checking the movement of mouse cursor.

If the positions of mouse cursor are not changed, the packer will

consider itself is under monitoring and exit early.

The big challenge to this experiment is that we do not have the

ground truth (e.g., source code or the binary code with no packer)

for most samples. We apply two statistic measures from the pre-

vious work to assess whether BinUnpack can recover the original

code: entropy deviation [55] and “code-to-data” ratio [86]. The byte

entropy value examines the randomness in binary code, and it has

been used to efficiently recognize packed binary [4, 54, 55, 74]. If

the sample is being compressed or encrypted, the entropy value

is typically high. According to PinDemonium’s evaluation [55], a

entropy deviation value of 0.4 between the unpacked version and

the packed version is sufficient to verify the correct process dump.

Another measure comes from Eureka [86], as the code-to-data ratio

would increase when a malware sample unpacks itself. Eureka uses

the threshold of 0.5 to determine the end of unpacking.

We did not select these two measures by accident. They are com-

plementary to each other, because the attempts to lower the entropy

value will increase code-to-data ratio eventually [99]. As shown in

Figure 8(a), all of the entropy deviations are beyond the threshold

0.4. The deviation value is from 0.61 to 0.96 with the average va-

lue 0.93. For “code-to-data” ratio evaluation (Figure 8(b)), 99.1% of

packed malware’s ratio ranges from 0.0 to 0.03, and the remaining

0.9%’s ratio is from 1.1 to 4.5, which is far above the threshold 0.5.

We further study these outliers and find that they are packed by

Armadillo or SoftwarePassport. Unlike other packers, these two

packers did not apply any instruction-level obfuscation. Instead,

they use double processes to mislead unpackers. However, these

outlier packed samples still exhibit a high entropy value. Figure 8(c)

shows the VirusTotal detection numbers for the packed malware,

the outputs of BinUnpack, and their differences, respectively. Af-

ter BinUnpack’s preprocessing, there are 7 to 19 extra anti-virus

scanners (the average number is 18) are able to recognize that mal-

ware. Our evaluation demonstrates the effectiveness of BinUnpack

against wild packed malware.

9 RELATEDWORK
Several previous work has confirmed that erasing the IAT of original

code is common in packers [17, 44, 82, 86, 97]. However, the work to

utilize IAT rebuilding for unpacking and resist to various evasions

at the same time is rare. We have discussed the status quo of generic

unpacking techniques in Section 2 and compared the recent tools

in Section 8.1. This section focuses on other related work.

The latest talk [100] raises three concerns onmalware unpacking,

and they fits our motivations perfectly: 1) researchers often underes-

timate the complexity of packers; 2) anti-virus products often report

false alarms when scanning packed benign programs; 3) the perva-

sive packed malware has severely limited the accuracy of machine

learning. Therefore, advanced generic unpacking is desperately

necessary. The recent work studies the common ways used by mal-

ware to detect the existence of a DBI tool and develops an anti-DBI

resistant unpacker [76]. However, the overhead is still quite high,

and it cannot handle the process hollowing technique. Xabier et al.

customize multi-path exploration techniques on packed code [98].

The purpose is to trigger the unpacking routine that checks run-

time environment. We believe BinUnpack can also benefit from

multi-path exploration to execute the hidden unpacking routine.

Debray et al. try to extract the unpacking routine code instead of

original code [18], which can provide insight to the mechanism of

custom packers.

Another related direction is DLL hijacking and its prevention.

DLL hijacking [79] is originally designed for malicious component

loading, and several methods have been proposed to prevent DLL

hijacking. Taeho Kwon and Zhendong Su [46, 47] present an auto-

matic technique to detect unsafe component loadings. Their tool

profiles an application’s dynamic loading behaviour via hooking

the APIs that are used to load component. These APIs include

“LdrLoadDLL”, “LdrpLoadDll”, and “LdrpMapDll”, which we have

introduced in the Figure 10. Byungho Min and Vijay Varadhara-

jan [61, 62] propose a cross verification mechanism for secure

execution and dynamic component loading. They also hook the

APIs including “LdrLoadDLL” to monitor the dynamic loading beha-

viour. All of these DLL hijacking prevention work assume that DLL

hijackers can not enter the OS kernel. In contrast, our work studies

how to use DLL hijacking for defense purpose, and the available

resources for defenders are rich. For example, BinUnpack can enter
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Figure 8: The cumulative distribution result of unpacking wild packed malware.

the OS kernel to hook native APIs. Therefore, using these DLL

hijacking prevention mechanisms to defeat BinUnpack becomes

increasingly difficult.

10 DISCUSSION & CONCLUSION
The prototype of BinUnpack has several limitations. First, we find

some custom packers can evade BinUnpack by detecting the mo-

vement of mouse cursor. Our next work is to create an artificial,

realistic environment that can simulate how users interact with

OS. Like other work [44, 49, 55], we find some unpacked code can

not function correctly. The reason is IAT obfuscation such as API

redirection [39] renders the rebuilt IAT incomplete. Our current

design only needs to make sure that the rebuilt IAT is different

from unpacking routine IAT. However, accurately reconstructing

the whole IAT requires heavyweight data flow analysis. We leave

it as our future work. Another interesting direction is to study the

feasibility of applying BinUnpack’s idea to Linux malware [16].

Packed malware in circulation is a tremendous amount. The

existing generic unpacking tools are limited by the high overhead

and lack of anti-analysis resistance. In this paper, we develop a no-

vel unpacking approach, BinUnpack, which is based on capturing

the “rebuilt-then-called” feature instead of “written-then-executed”

memory. BinUnpack’s design is free from tedious memory access

tracing and results in very small runtime overhead. To withstand

anti-hooking tricks, we develop BinUnpack’s API monitor module

by kernel-level DLL hijacking. Our large-scale experiments demon-

strate the efficacy and generality of BinUnpack.
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Algorithm 2 Algorithm of MyNtMapViewOfSection.

SectionHandle : a handle to a section object which will be map-

ped into memory.

∗BaseAddress: a pointer to a base address where the section

will be mapped to.

1: function MyNtMapViewOfSection(SectionHandle, ... ∗
BaseAddress, ...)

/* Resolve the FileName from SectionHandle */
2: FileName ← ResolveFileName(SectionHandle)
3: if FileName = “c:\windows\system32\kernel32.dll” then

/* Map the home-made DLL "MyKernel32.dll"
into memory address of mapped_address */

4: mapped_address←MapFile(MyKernel32.dll )
/* set “∗BaseAddress” to “mapped_address” */

5: *BaseAddress← mapped_address

/* Let “LdrpMapDll” function to reload the
home-made kernel32.dll */

6: return STATUS_IMAGE_NOT_AT_BASE

7: else
8: return NtMapViewOfSection(SectionHandle ,...

∗BaseAddress ,...)
9: end if
10: end function

Drop the file of DLL 

and encrypted payload 
Load  DLL into memory

DLL decrypts payload 

into Memory
Run the decrypted payload  

Figure 11: The typical attacking procedure of NSIS packed
ransomware.

Table 7: The results of hook-evasion resistance evaluation.
“X” indicates the API monitor/sandbox is resilient to that
evasion type.

Packers Evasion Type Detours CWSandbox Cuckoo BinUnpack

Armadillo Child process X X X
Pespin Child process X X X
Asprotect Stolen code X
Pelock Stolen code X
Yoda’s Protector Stolen code X
Yoda’s Crypter Stolen code X
PEP Stolen code X
Enigma Stolen code X
Themida Stolen code X
Cerber’s packer Process hollowing X X X
Cerber’s packer Crash hooking module X
Custom UPX Custom loader [57] X
Custom UPX Stealth loader [39] X
Custom UPX DLL integrity check X

Table 5: Standard path search order.

Order

The directory of the application loaded

The system directory

The 16-bit system directory

The Windows directory

The current directory

The PATH environment variable

APPENDIX

c:\windows\system32\wsock32.dll

d:\wsock32.dll

 Monitor this 

API?

Malicious code

Yes

Forward
No

d:\

Custom-made DLL

Target DLL

Figure 9: Hijacking Windows network management DLL,
wsock32.dll, with a custom-made DLL.

 NtMapViewOfSection in ntoskrnl.exe

LoadLibrary in kernel32.dll

LdrLoadDll in ntdll.dll

LdrpLoadDll in ntdll.dll

User-Level

Kernel-Level

Wrapper

Load a DLL (private function)

Map a DLL to the address space

Map a view of a section into the 

address space 

Resolve the loading 

DLL’s  absolute path 

NtMapViewOfSection in ntdll.dll

Forword all the parameters to 

the   “NtMapViewOfSection” in 

ntoskrnl.exe

LdrpMapDll  in ntdll.dll

Figure 10: The call chain of LoadLibrary. LoadLibrary first
resolves the loading DLL’s absolute path, including reading
core DLL’s path from the particular Registry key. Then, Lo-
adLibrary forwards the loading DLL’s full path to the next
level of API, and it finally invokes NtMapViewOfSection.

Table 6: The overhead BinUnpack introduces when working
with benign programs.

Sample Benign (ms)

BinUnpack (ms)

Relative Slowdown

IATComparison OEPSearch Dump

tasklist 109 0.24 0 0 0.22%

winrar 10624 30.57 0 0 0.29%

WinPcap 3620 0.45 0 0 0.01%

IE 254 0.65 0 0 0.26%

FireFox 231 1.97 0 0 0.85%

Chrome 161 2.39 0 0 1.48%

Session 3A: Binary Analysis  CCS’18, October 15-19, 2018, Toronto, ON, Canada

411


	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 The Status Quo of Generic Unpacking
	2.2 API Call Resolution
	2.3 Import Address Table Rebuilding
	2.4 Motivating Example

	3 Overview 
	4 Hook-evasion Resistant API Monitor 
	4.1 API Hooking and Limitations
	4.2 DLL Hijacking
	4.3 Kernel-level DLL Hijacking
	4.4 Non-Standard Explicit Linking

	5 IAT Comparison
	6 OEP Search & Process Dump
	7 Possible Attacks and Countermeasures
	7.1  Attacks to ``Rebuilt-then-Called''
	7.2 Attacks to Kernel-level DLL Hijacking

	8 Evaluation
	8.1 Comparative Evaluation
	8.2 Impact on Benign Program Execution
	8.3 Hook-evasion Resistance Evaluation
	8.4 Unpacking Wild Packed Malware

	9 Related Work
	10 Discussion & Conclusion
	11 Acknowledgments
	References



