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Abstract. We focus in this paper on generating models of quantified
first-order formulas over built-in theories, which is paramount in software
verification and bug finding. While standard methods are either geared
toward proving the absence of a solution or targeted to specific theories,
we propose a generic and radically new approach based on a reduction to
the quantifier-free case. Our technique thus allows to reuse all the efficient
machinery developed for that context. Experiments show a substantial
improvement over state-of-the-art methods.

1 Introduction

Context. Software verification methods have come to rely increasingly on rea-
soning over logical formulas modulo theory. In particular, the ability to generate
models (i.e., find solutions) of a formula is of utmost importance, typically in the
context of bug finding or intensive testing — symbolic execution [21] or bounded
model checking [7]. Since quantifier-free first-order formulas on well-suited the-
ories are sufficient to represent many reachability properties of interest, the
Satisfiability Modulo Theory (SMT) [6,25] community has primarily dedicated
itself to designing solvers able to efficiently handle such problems.

Yet, universal quantifiers are sometimes needed, typically when considering
preconditions or code abstraction. Unfortunately, most theories handled by SMT-
solvers are undecidable in the presence of universal quantifiers. There exist
dedicated methods for a few decidable quantified theories, such as Presburger
arithmetic [9] or the array property fragment [8], but there is no general and
effective enough approach for the model generation problem over universally
quantified formulas. Indeed, generic solutions for quantified formulas involving
heuristic instantiation and refutation are best geared to proving the unsatisfiability
of a formula (i.e., absence of solution) [13,20], while recent proposals such as local
theory extensions [2], finite instantiation [31,32] or model-based instantiation
[29,20] either are too narrow in scope, or handle quantifiers on free sorts only, or
restrict themselves to finite models, or may get stuck in infinite refinement loops.
Goal and challenge. Our goal is to propose a generic and efficient approach to
the model generation problem over arbitrary quantified formulas with support



for theories commonly found in software verification. Due to the huge effort made
by the community to produce state-of-the-art solvers for quantifier-free theories
(QF-solvers), it is highly desirable for this solution to be compatible with current
leading decision procedures, namely SMT approaches.

Proposal. Our approach turns a quantified formula into a quantifier-free formula
with the guarantee that any model of the latter contains a model of the former.
The benefits are threefold: the transformed formula is easier to solve, it can be
sent to standard QF-solvers, and a model for the initial formula is deducible
from a model of the transformed one. The idea is to ignore quantifiers but
strengthen the quantifier-free part of the formula with an independence condition
constraining models to be independent from the (initially) quantified variables.

Contributions. This paper makes the following contributions:
We propose a novel and generic framework for model generation of quantified

formula (Sec. 5, Alg. 1) relying on the inference of sufficient independence
condition (Sec. 4). We prove its correctness (Thm. 1, mechanized in Coq) and
its efficiency under reasonable assumptions (Prop. 4 and 5). Especially our
approach implies only a linear overhead in the formula size. We also briefly
study its completeness, related to the notion of weakest independence condition.

We define a taint-based procedure for the inference of independence conditions
(Sec. 5.2), composed of a theory-independent core (Alg. 2) together with
theory-dependent refinements. We propose such refinements for a large class
of operators (Sec. 6.2), encompassing notably arrays and bitvectors.

Finally, we present a concrete implementation of our method specialized on arrays
and bitvectors (Sec. 7). Experiments on SMT-LIB benchmarks and software
verification problems notably demonstrate that we are able not only to very
effectively lift quantifier-free decision procedures to the quantified case, but
also to supplement recent advances, such as finite or model-based quantifier
instantiation [31,32,29,20]. Indeed, we concretely supply SMT solvers with the
ability to efficiently address an extended set of software verification questions.

Discussions. Our approach supplements state-of-the-art model generation on
quantified formulas by providing a more generic handling of satisfiable problems.
We can deal with quantifiers on any sort and we are not restricted to finite models.
Moreover, this is a lightweight preprocessing approach requiring a single call to the
underlying quantifier-free solver. The method also extends to partial elimination of
universal quantifiers, or reduction to quantified-but-decidable formulas (Sec. 5.4).

While techniques a la E-matching allow to lift quantifier-free solvers to the
unsatisfiability checking of quantified formulas, this works provides a mechanism
to lift them to the satisfiability checking and model generation of quantified
formulas, yielding a more symmetric handling of quantified formulas in SMT.
This new approach paves the way to future developments such as the definition of
more precise inference mechanisms of independence conditions, the identification
of interesting subclasses for which inferring weakest independence conditions is
feasible, and the combination with other quantifier instantiation techniques.



2 Motivation

Let us take the code sample in Fig. 1 and suppose we want to reach function
analyze_me. For this purpose, we need a model (a.k.a., solution) of the reachabil-
ity condition φ , ax+ b > 0, where a, b and x are symbolic variables associated
to the program variables a, b and x. However, while the values of a and b are
user-controlled, the value of x is not. Therefore if we want to reach analyze_me
in a reproducible manner, we actually need a model of φ∀ , ∀x.ax+ b > 0, which
involves universal quantification. While this specific formula is simple, model
generation for quantified formulas is notoriously difficult: PSPACE-complete for
booleans, undecidable for uninterpreted functions or arrays.
int main () {

int a = input ();
int b = input ();

int x = rand ();

if (a * x + b > 0) {
analyze_me ();

}
else {

...;
}

}

Quantified reachability condition
(1) ∀x.ax+ b > 0

Taint variable constraint
(2) a• ∧ b• ∧ ¬ (x•) (a•, b•, x• : fresh boolean)

Independence condition
(3) ((a• ∧ x•) ∨ (a• ∧ a = 0) ∨ (x• ∧ x = 0)) ∧ b•

(4) ((> ∧⊥) ∨ (> ∧ a = 0) ∨ (⊥ ∧ x = 0)) ∧ >
(5) a = 0

Quantifier-free approximation of (1)
(6) (ax+ b > 0) ∧ (a = 0)

Fig. 1: Motivating example

Reduction to the quantifier-free case through independence.We propose
to ignore the universal quantification over x, but restrict models to those which
do not depend on x. For example, model {a = 1, x = 1, b = 0} does depend on
x, as taking x = 0 invalidates the formula, while model {a = 0, x = 1, b = 1} is
independent of x. We call constraint ψ , (a = 0) an independence condition: any
interpretation of φ satisfying ψ will be independent of x, and therefore a model
of φ ∧ ψ will give us a model of φ∀.

Inference of independence conditions through tainting. Fig. 1 details in
its right part a way to infer such independence conditions. Given a quantified
reachability condition (1), we first associate to every variable v a (boolean) taint
variable v• indicating whether the solution may depend on v (value >) or not
(value ⊥). Here, x• is set to ⊥, a• and b• are set to > (2). An independence
condition (3) — a formula modulo theory — is then constructed using both
initial and taint variables. We extend taint constraints to terms, t• indicating
here whether t may depend on x or not, and we require the top-level term
(i.e., the formula) to be tainted to > (i.e., to be indep. from x). Condition (3)
reads as follows: in order to enforce that (ax + b > 0)• holds, we enforce that
(ax)• and b• hold, and for (ax)• we require that either a• and x• hold, or a•
holds and a = 0 (absorbing the value of x), or the symmetric case. We see



that ·• is defined recursively and combines a systematic part (if t• holds then
f(t)• holds, for any f) with a theory-dependent part (here, based on ×). After
simplifications (4), we obtain a = 0 as an independence condition (5) which is
adjoined to the reachability condition freed of its universal quantification (6).
A QF-solver provides a model of (6) (e.g., {a = 0, b = 1, x = 5}), lifted into a
model of (1) by discarding the valuation of x (e.g., {a = 0, b = 1}).

In this specific example the inferred independence condition (5) is the most
generic one and (1) and (6) are equisatisfiable. Yet, in general it may be an
under-approximation, constraining the variables more than needed and yielding
a correct but incomplete decision method: a model of (6) can still be turned into
a model of (1), but (6) might not have a model while (1) has.

3 Notations

We consider the framework of many-sorted first-order logic with equality, and
we assume standard definitions of sorts, signatures and terms. Given a tuple of
variables x , (x1, . . . , xn) and a quantifier Q (∀ or ∃), we shorten Qx1 . . .Qxn.Φ
as Qx.Φ. A formula is in prenex normal form if it is written as Q1x1 . . .Qnxn.Φ
with Φ a quantifier-free formula. A formula is in Skolem normal form if it is in
prenex normal form with only universal quantifiers. We write Φ (x) to denote
that the free variables of Φ are in x. Let t , (t1, . . . , tn) be a term tuple, we
write Φ (t) for the formula obtained from Φ by replacing each occurrence of xi in
Φ by ti. An interpretation I associates a domain to each sort of a signature and
a value to each symbol of a formula, and J∆KI denotes the evaluation of term ∆
over I. A satisfiability relation |= between interpretations and formulas is defined
inductively as usual. A model of Φ is an interpretation I satisfying I |= Φ. We
sometimes refer to models as “solutions”. Formula Ψ entails formula Φ, written
Ψ |= Φ, if every interpretation satisfying Ψ satisfies Φ as well. Two formulas are
equivalent, denoted Ψ ≡ Φ, if they have the same models. A theory T , (Σ,I)
restricts symbols in Σ to be interpreted in I. The quantifier-free fragment of T
is denoted QF-T .

Convention. Letters a, b, c . . . denote uninterpreted symbols and variables. Let-
ters x, y, z . . . denote quantified variables. a, b, c denote sets of uninterpreted
symbols. x,y, z . . . denote sets of quantified variables. Finally, a, b, c . . . denote
valuations of associated (sets of) symbols.

In the rest of this paper, we assume w.l.o.g. that all formulas are in Skolem
normal form. Recall that any formula φ in classical logic can be normalized
into a formula ψ in Skolem normal form such that any model of φ can be lifted
into a model of ψ, and vice versa. This strong relation, much closer to formula
equivalence than to formula equisatisfiability, ensures that our correctness and
completeness results all along the paper hold for arbitrarily quantified formula.

Companion technical report. Additional technical details (proofs, experiments,
etc.) are available online at http://benjamin.farinier.org/cav2018/.
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4 Musing with independence

4.1 Independent interpretations, terms and formulas

A solution (x, a) of Φ does not depend on x if Φ(x,a) is always true or always
false, for all possible valuations of x as long as a is set to a. More formally, we
define the independence of an interpretation of Φ w.r.t. x as follows:

Definition 1 (Independent interpretation).
– Let Φ (x,a) a formula with free variables x and a. Then an interpretation I
of Φ (x,a) is independent of x if for all interpretations J equal to I except
on x, I |= Φ if and only if J |= Φ.

– Let ∆ (x,a) a term with free variables x and a. Then an interpretation I of
∆ (x,a) is independent of x if for all interpretations J equal to I except on
x, J∆ (x,a)KI = J∆ (x,a)KJ .

Regarding formula ax+ b > 0 from Fig. 1, {a = 0, b = 1, x = 1} is independent
of x while {a = 1, b = 0, x = 1} is not. Considering term (t [a← b]) [c], with t an
array written at index a then read at index c, {a = 0, b = 42, c = 0, t = [. . . ]}
is independent of t (evaluates to 42) while {a = 0, b = 1, c = 2, t = [. . . ]} is not
(evaluates to t [2]). We now define independence for formulas and terms.

Definition 2 (Independent formula and term).
– Let Φ (x,a) a formula with free variables x and a. Then Φ (x,a) is indepen-
dent of x if ∀x.∀y. (Φ (x,a)⇔ Φ (y,a)) is true for any value of a.

– Let ∆ (x,a) a term with free variables x and a. Then ∆ (x,a) is independent
of x if ∀x.∀y. (∆ (x,a) = ∆ (y,a)) is true for any value of a.

Def. 2 of formula and term independence is far stronger than Def. 1 of
interpretation independence. Indeed, it can easily be checked that if a formula
Φ (resp. a term ∆) is independent of x, then any interpretation of Φ (resp. ∆)
is independent of x. However, the converse is false as formula ax+ b > 0 is not
independent of x, but has an interpretation {a = 0, b = 1, x = 1} which is.

4.2 Independence conditions

Since it is rarely the case that a formula (resp. term) is independent from a set
of variables x, we are interested in Sufficient Independence Conditions. These
conditions are additional constraints that can be added to a formula (resp. term)
in such a way that they make the formula (resp. term) independent of x.

Definition 3 (Sufficient Independence Condition (SIC)).
– A Sufficient Independence Condition for a formula Φ (x,a) with regard to x
is a formula Ψ (a) such that Ψ (a) |= (∀x.∀y.Φ (x,a)⇔ Φ (y,a)).

– A Sufficient Independence Condition for a term ∆ (x,a) with regard to x, is
a formula Ψ (a) such that Ψ (a) |= (∀x.∀y.∆ (x,a) = ∆ (y,a)).



We denote by sicΦ,x (resp. sic∆,x) a Sufficient Independence Condition for
a formula Φ (x,a) (resp. for a term ∆ (x,a)) with regard to x. For example,
a = 0 is a sicΦ,x for formula Φ , ax+ b > 0, and a = c is a sic∆,t for term
∆ , (t [a← b]) [c]. Note that ⊥ is always a sic, and that sic are closed under ∧
and ∨. Prop. 1 clarifies the interest of sic for model generation.

Proposition 1 (Model generalization). Let Φ (x,a) a formula and Ψ a
sicΦ,x. If there exists an interpretation {x, a} such that {x, a} |= Ψ (a)∧Φ (x,a),
then {a} |= ∀x.Φ (x,a).

Proof (sketch of). Appendix C.1 of the companion technical report.

For the sake of completeness, we introduce now the notion of Weakest Indepen-
dence Condition for a formula Φ (x,a) with regard to x (resp. a term ∆ (x,a)).
We will denote such conditions wicΦ,x (resp. wic∆,x).

Definition 4 (Weakest Independence Condition (WIC)).
– A Weakest Independence Condition for a formula Φ (x,a) with regard to x
is a sicΦ,x Π such that, for any other sicΦ,x Ψ , Ψ |= Π.

– A Weakest Independence Condition for a term ∆ (x,a) with regard to x is a
sic∆,x Π such that, for any other sic∆,x Ψ , Ψ |= Π.

Note that Ω , ∀x.∀y. (Φ (x,a)⇔ Φ (y,a)) is always a wicΦ,x, and any
formula Π is a wicΦ,x if and only if Π ≡ Ω. Therefore all syntactically different
wic have the same semantics. As an example, both sic a = 0 and a = c presented
earlier are wic. Prop. 2 emphasizes the interest of wic for model generation.

Proposition 2 (Model specialization). Let Φ (x,a) a formula and Π(a) a
wicΦ,x. If there exists an interpretation {a} such that {a} |= ∀x.Φ (x,a), then
{x, a} |= Π (a) ∧ Φ (x,a) for any valuation x of x.

Proof (sketch of). Appendix C.2 of the companion technical report.

From now on, our goal is to infer from a formula ∀x.Φ (x,a) a sicΦ,x Ψ (a),
find a model for Ψ (a)∧Φ (x,a) and generalize it. This sicΦ,x should be as weak
— in the sense “less coercive” — as possible, as otherwise ⊥ could always be used,
which would not be very interesting for our overall purpose.

For the sake of simplicity, previous definitions omit to mention the theory
to which the sic belongs. If the theory T of the quantified formula is decidable
we can always choose ∀x.∀y. (Φ (x,a)⇔ Φ (y,a)) as a sic, but it is simpler to
directly use a T -solver. The challenge is, for formulas in an undecidable theory
T , to find a non-trivial sic in its quantifier-free fragment QF-T .

Under this constraint, we cannot expect a systematic construction of wic, as
it would allow to decide the satisfiability of any quantified theory with a decidable
quantifier-free fragment. Yet informally, the closer a sic is to be a wic, the closer
our approach is to completeness. Therefore this notion might be seen as a fair
gauge of the quality of a sic. Having said that, we leave a deeper study on the
inference of wic as future work.



5 Generic framework for SIC-based model generation

We describe now our overall approach. Alg. 1 presents our sic-based generic
framework for model generation (Sec. 5.1). Then, Alg. 2 proposes a taint-based
approach for sic inference (Sec. 5.2). Finally, we discuss complexity and efficiency
issues (Sec. 5.3) and detail extensions (Sec. 5.4), such as partial elimination.

From now on, we do not distinguish anymore between terms and formulas,
their treatment being symmetric, and we call targeted variables the variables we
want to be independent of.

5.1 SIC-based model generation

Algorithm 1: SIC-based model generation for quantified formulas
Parameter: solveQF

Input: Φ(v) a formula in QF-T
Output: sat (v) with v |= Φ, unsat or unknown

Parameter: inferSIC
Input: Φ a formula in QF-T , and x a set of targeted variables
Output: Ψ a sicΦ,x in QF-T

Function solveQ:
Input: ∀x.Φ (x,a) a universally quantified formula over theory T
Output: sat (a) with a |= ∀x.Φ (x,a), unsat or unknown
Let Ψ (a) , inferSIC (Φ (x,a) ,x)
match solveQF (Φ (x,a) ∧ Ψ (a))

with sat (x, a) return sat (a)
with unsat

if Ψ is a wicΦ,x then return unsat
else return unknown

with unknown return unknown

Our model generation technique is described in Alg. 1. Function solveQ takes
as input a formula ∀x.Φ (x,a) over a theory T . It first calculates a sicΦ,x Ψ (a)
in QF-T . Then it solves Φ (x,a) ∧ Ψ (a). Finally, depending on the result and
whether Ψ (a) is a wicΦ,x or not, it answers sat, unsat or unknown. solveQ
is parametrized by two functions solveQF and inferSIC:
solveQF is a decision procedure (typically a SMT solver) for QF-T . solveQF

is said to be correct if each time it answers sat (resp. unsat) the formula is
satisfiable (resp. unsatisfiable); it is said to be complete if it always answers
sat or unsat, never unknown.

inferSIC takes as input a formula Φ in QF-T and a set of targeted variables x,
and produces a sicΦ,x in QF-T . It is said to be correct if it always returns a
sic, and complete if all the sic it returns are wic. A possible implementation
of inferSIC is described in Alg. 2 (Sec. 5.2).

Function solveQ enjoys the two following properties, where correctness and
completeness are defined as for solveQF.



Theorem 1 (Correctness and completeness).
– If solveQF and inferSIC are correct, then solveQ is correct.
– If solveQF and inferSIC are complete, then solveQ is complete.

Proof (sketch of). Follow directly from Prop. 1 and 2 (Sec. 4.2).

5.2 Taint-based SIC inference

Algorithm 2: Taint-based sic inference
Parameter: theorySIC

Input: f a function symbol, its parameters φi, x a set of targeted variables
and ψi their associated sicφi,x

Output: Ψ a sicf(φi),x
Default: Return ⊥

Function inferSIC(Φ,x):
Input: Φ a formula and x a set of targeted variables
Output: Ψ a sicΦ,x
either Φ is a constant return >
either Φ is a variable v return v /∈ x
either Φ is a function f (φ1, . , φn)

Let ψi , inferSIC (φi,x) for all i ∈ {1, . , n}
Let Ψ , theorySIC (f, (φ1,., φn) , (ψ1,., ψn) ,x)
return Ψ ∨

∧
i
ψi

Alg. 2 presents a taint-based implementation of function inferSIC. It consists
of a (syntactic) core calculus described here, refined by a (semantic) theory-
dependent calculus theorySIC described in Sec. 6. From formula Φ (x,a) and
targeted variables x, inferSIC is defined recursively as follow.

If Φ is a constant it returns > as constants are independent of any variable. If
Φ is a variable v, it returns > if we may depend on v (i.e., v 6∈ x), ⊥ otherwise.
If Φ is a function f (φ1, . , φn), it first recursively computes for every sub-term φi
a sicφi,x ψi. Then these results are sent with Φ to theorySIC which computes a
sicΦ,x Ψ . The procedure returns the disjunction between Ψ and the conjunction
of the ψi’s. Note that theorySIC default value ⊥ is absorbed by the disjunction.

The intuition is that if the φi’s are independent of x, then f (φ1, . , φn) is.
Therefore Alg. 2 is said to be taint-based as, when theorySIC is left to its default
value, it acts as a form of taint tracking [15,27] inside the formula.

Proposition 3 (Correctness). Given a formula Φ (x,a) and assuming that
theorySIC is correct, then inferSIC (Φ,x) indeed computes a sicΦ,x.

Proof (sketch of). This proof has been mechanized in Coq3.

Note that on the other hand, completeness does not hold: in general inferSIC
does not compute a wic, cf. discussion in Sec. 5.4.
3 http://benjamin.farinier.org/cav2018/
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5.3 Complexity and efficiency
We now evaluate the overhead induced by Alg. 1 in terms of formula size and
complexity of the resolution — the running time of Alg. 1 itself being expected
to be negligible (preprocessing).
Definition 5. The size of a term is inductively defined as size (x) , 1 for
x a variable, and size (f (t1, . , tn)) , 1 + Σi size (ti) otherwise. We say that
theorySIC is bounded in size if there exists K such that, for all terms ∆,
size (theorySIC (∆, ·)) ≤ K.
Proposition 4 (Size bound). Let N be the maximal arity of symbols defined
by theory T . If theorySIC is bounded in size by K, then for all formula Φ in T ,
size (inferSIC (Φ, ·)) ≤ (K +N) · size (Φ).
Proposition 5 (Complexity bound). Let us suppose theorySIC bounded
in size, and let Φ be a formula belonging to a theory T with polynomial-time
checkable solutions. If Ψ is a sicΦ,· produced by inferSIC, then a solution for
Φ ∧ Ψ is checkable in time polynomial in size of Φ.
Proof (sketch of). Appendices C.3 and C.4 of the companion technical report.

These propositions demonstrate that, for formula landing in complex enough
theories, our method lifts QF-solvers to the quantified case (in an approximated
way) without any significant overhead, as long as theorySIC is bounded in size.
This latter constraint can be achieved by systematically binding sub-terms to
(constant-size) fresh names and having theorySIC manipulates these binders.

5.4 Discussions

Extension. Let us remark that our framework encompasses partial quantifier
elimination as long as the remaining quantifiers are handled by solveQF. For
example, we may want to remove quantifications over arrays but keep those on
bitvectors. In this setting, inferSIC can also allow some level of quantification,
providing that solveQF handles them.
About WIC. As already stated, inferSIC does not propagate wic in general.
For example, considering formulas t1 , (x < 0) and t2 , (x ≥ 0), then wict1,x =
⊥ and wict2,x = ⊥. Hence inferSIC returns ⊥ as sic for t1 ∨ t2, while actually
wict1∨t2,x = >.

Nevertheless, we can already highlight a few cases where wic can be computed.
(1) inferSIC does propagate wic on one-to-one uninterpreted functions. (2) If
no variable of x appears in any sub-term of f(t, t′), then the associated wic
is >. While a priori naive, this case becomes interesting when combined with
simplifications (Sec. 7.1) that may eliminate x. (3) If a sub-term falls in a sub-
theory admitting quantifier elimination, then the associated wic is computed
by eliminating quantifiers in (∀.x.y.Φ(x,a)⇔ Φ(y,a)). (4) We may also think
of dedicated patterns: regarding bitvectors, the wic for x ≤ a ⇒ x ≤ x + k is
a ≤ Max− k. Identifying under which condition wic propagation holds is a strong
direction for future work.



6 Theory-dependent SIC refinements

We now present theory-dependent sic refinements for theories relevant to program
analysis: booleans, fixed-size bitvectors and arrays — recall that uninterpreted
functions are already handled by Alg. 2. We then propose a generalization of
these refinements together with a correctness proof for a larger class of operators.

6.1 Refinement on theories

We recall theorySIC takes four parameters: a function symbol f , its arguments
(t1, . , tn), their associated sic (t•1, . , t•n), and targeted variables x. theorySIC
pattern-matches the function symbol and returns the associated sic according to
rules in Fig. 2. If a function symbol is not supported, we return the default value
⊥. Constants and variables are handled by inferSIC. For the sake of simplicity,
rules in Fig. 2 are defined recursively, but can easily fit the interface required for
theorySIC in Alg. 2 by turning recursive calls into parameters.

Booleans and ite. Rules for the boolean theory (Fig. 2a) handles ⇒, ∧, ∨
and ite (if-then-else). For binary operators, the sic is the conjunction of the
sic associated to one of the two sub-terms and a constraint on this sub-term
that forces the result of the operator to be constant — e.g., to be equal to ⊥
(resp. >) for the antecedent (resp. consequent) of an implication. These equality
constraints are based on absorbing elements of operators.

Inference for the ite operator is more subtle. Intuitively, if its condition is
independent of some x, we use it to select the sicx of the sub-term that will be
selected by the ite operator. If the condition is dependent of x, then we cannot
use it anymore to select a sicx. In this case, we return the conjunction of the
sicx of both sub-terms and the constraint that the two sub-terms are equal.

(a⇒ b)• , (a• ∧ a = ⊥) ∨ (b• ∧ b = >)
(a ∧ b)• , (a• ∧ a = ⊥) ∨ (b• ∧ b = ⊥)
(a ∨ b)• , (a• ∧ a = >) ∨ (b• ∧ b = >)

(ite c a b)• , (c• ∧ ite c a• b•) ∨ (a• ∧ b• ∧ a = b)
(a) Booleans and ite

(an ∧ bn)• , (a•
n ∧ an = 0n) ∨ (b•

n ∧ bn = 0n)
(an ∨ bn)• , (a•

n ∧ an = 1n) ∨ (b•
n ∧ bn = 1n)

(an × bn)• , (a•
n ∧ an = 0n) ∨ (b•

n ∧ bn = 0n)
(an � bn)• , (b•

n ∧ bn ≥ n)
(b) Fixed-size bitvectors

(select (store a i e) j)• , (ite (i = j) e (select a j))•

, ((i = j)• ∧ (ite (i = j) e• (select a j)•)) ∨ (e• ∧ (select a j)• ∧ (e = select a j))
, (i• ∧ j• ∧ (ite (i = j) e• (select a j)•)) ∨ (e• ∧ (select a j)• ∧ (e = select a j))

(c) Arrays

Fig. 2: Examples of refinements for theorySIC



Bitvectors and arrays. Rules for bitvectors (Fig. 2b) follow similar ideas, with
constant > (resp. ⊥) substituted by 1n (resp. 0n), the bitvector of size n full of
ones (resp. zeros). Rules for arrays (Fig. 2c) are derived from the theory axioms.
The definition is recursive: rules need be applied until reaching either a store at
the position where the select occurs, or the initial array variable.

As a rule of thumb, good sic can be derived from function axioms in the form
of rewriting rules, as done for arrays. Similar constructions can be obtained for
example for stacks or queues.

6.2 R-absorbing functions

We propose a generalization of the previous theory-dependent sic refinements to
a larger class of functions, and prove its correctness.

Intuitively, if a function has an absorbing element, constraining one of its
operands to be equal to this element will ensure that the result of the function is
independent of the other operands. However, it is not enough when a relation
between some elements is needed, such as with (t[a← b]) [c] where constraint
a = c ensures the independence with regards to t. We thus generalize the notion
of absorption to R-absorption, where R is a relation between function arguments.

Definition 6. Let f : τ1 × · · · × τn → τ a function. f is R-absorbing if there
exists IR ⊂ {1, · · · , n} and R a relation between αi : τi, i ∈ IR such that, for all
b , (b1, . . . , bn) and c , (c1, . . . , cn) ∈ τ1 × · · · × τn, if R(b|IR

) and b|IR
= c|IR

where ·|IR
is the projection on IR, then f(b) = f(c).

IR is called the support of the relation of absorption R.

For example, (a, b) 7→ a ∨ b has two pairs 〈R, IR〉 coinciding with the usual
notion of absorption, 〈a=>, {1a}〉 and 〈b=>, {2b}〉. Function (x, y, z) 7→ xy + z
has among others the pair 〈x=0, {1x, 3z}〉, while (a, b, c, t) 7→ (t[a← b]) [c] has
the pair 〈a=c, {1a, 3c}〉. We can now state the following proposition:

Proposition 6. Let f (t1, . . . , tn) be a R-absorbing function of support IR, and
let t•i be a sicti,x for some x. Then R (ti∈IR)

∧
i∈IR

t•i is a sicf,x.

Proof (sketch of). Appendix C.5 of the companion technical report.

Previous examples (Sec. 6.1) can be recast in term of R-absorbing function,
proving their correctness (cf. companion technical report). Note that regarding
our end-goal, we should accept only R-absorbing functions in QF-T .

7 Experimental evaluation

This section describes the implementation of our method (Sec. 7.1) for bitvectors
and arrays (ABV), together with experimental evaluation (Sec. 7.2).



7.1 Implementation
Our prototype Tfml (Taint engine for ForMuLa)4 comprises 7 klocs of OCaml.
Given an input formula in the SMT-LIB format [5] (ABV theory), Tfml
performs several normalizations before adding taint information following Alg. 1.
The process ends with simplifications as taint usually introduces many constant
values, and a new SMT-LIB formula is output.
Sharing with let-binding. This stage is crucial as it allows to avoid term
duplication in theorySIC (Alg. 2, Sec. 5.3, and Prop. 4). We introduce new
names for relevant sub-terms in order to easily share them.
Simplifications. We perform constant propagation and rewriting (standard
rules, e.g. x− x 7→ 0 or x× 1 7→ x) on both initial and transformed formulas –
equality is soundly approximated by syntactic equality.
Shadow arrays. We encode taint constraints over arrays through shadow arrays.
For each array declared in the formula, we declare a (taint) shadow array. The
default value for all cells of the shadow array is the taint of the original array, and
for each value stored (resp. read) in the original array, we store (resp. read) the
taint of the value in the shadow array. As logical arrays are infinite, we cannot
constrain all the values contained in the initial shadow array. Instead, we rely
on a common trick in array theory: we constrain only cells corresponding to a
relevant read index in the formula.
Iterative skolemization. While we have supposed along the paper to work on
skolemized formulas, we have to be more careful in practice. Indeed, skolemiza-
tion introduce dependencies between a skolemized variable and all its preceding
universally quantified variables, blurring our analysis and likely resulting in con-
sidering the whole formula as dependent. Instead, we follow an iterative process:
1. Skolemize the first block of existentially quantified variables; 2. Compute the
independence condition for any targeted variable in the first block of universal
quantifiers and remove these quantifiers; 3. Repeat. This results in full Skolemiza-
tion together with the construction of an independence condition, while avoiding
many unnecessary dependencies.

7.2 Evaluation

Objective. We experimentally evaluate the following research questions: RQ1
How does our approach perform with regard to state-of-the-art approaches for
model generation of quantified formulas? RQ2 How effective is it at lifting
quantifier-free solvers into (sat-only) quantified solvers? RQ3 How efficient is
it in terms of preprocessing time and formula size overhead? We evaluate our
method on a set of formulas combining arrays and bitvectors (paramount in
software verification), against state-of-the-art solvers for these theories.
Protocol. The experimental setup below runs on an Intel(R) Xeon(R) E5-2660
v3 @ 2.60GHz, 4GB RAM per process, and a timeout of 1000s per formula.
4 http://benjamin.farinier.org/cav2018/

http://benjamin.farinier.org/cav2018/


Table 1: Answers and resolution time (in seconds, include timeout)
Boolector• CVC4 CVC4• CVC4E CVC4E• Z3 Z3• Z3E Z3E•

SM
T

-L
IB sat 399 84 242 84 242 261 366 87 366

# unsat N/A 0 N/A 0 N/A 165 N/A 0 N/A
unknown 870 1185 1027 1185 1027 843 903 1182 903

total time 349 165 194 667 165 196 934 270 150 36 480 192 41 935

B
in

se
c sat 1042 951 954 951 954 953 1042 953 1042

# unsat N/A 62 N/A 62 N/A 319 N/A 62 N/A
unknown 379 408 467 408 467 149 379 406 379

total time 1152 64 761 76 811 64 772 77 009 30 235 11 415 135 11 604
solver•: solver enhanced with our method Z3E , CVC4E : essentially E-matching

Metrics For RQ1 we compare the number of sat and unknown answers
between solvers supporting quantification, with and without our approach. For
RQ2 , we compare the number of sat and unknown answers between quantifier-
free solvers enhanced by our approach and solvers supporting quantification.
For RQ3 , we measure preprocessing time and formulas size overhead.

Benchmarks We consider two sets of ABV formulas. First, a set of 1421
formulas from (a modified version of) the symbolic execution tool Binsec [12]
representing quantified reachability queries (cf. Sec. 2) over Binsec benchmark
programs (security challenges, e.g. crackme or vulnerability finding). The
initial (array) memory is quantified so that models depend only on user input.
Second, a set of 1269 ABV formulas generated from formulas of the QF-ABV
category of SMT-LIB [5] – sub-categories brummayerbiere, dwp formulas
and klee selected. The generation process consists in universally quantifying
some of the initial array variables, mimicking quantified reachability problems.

Competitors For RQ1 , we compete against the two state-of-the-art SMT solvers
for quantified formulas CVC4 [4] (finite model instantiation [31]) and Z3 [14]
(model-based instantiation [20]). We also consider degraded versions CVC4E
and Z3E that roughly represent standard E-matching [16]. For RQ2 we use
Boolector [10], one of the very best QF-ABV solvers.

Table 2: Complementarity of our approach with existing solvers (sat instances)
CVC4• Z3• Boolector•

SMT-LIB CVC4 -10 +168 [252] -10 +325 [409]
Z3 -119 +224 [485] -86 +224 [485]

Binsec CVC4 -25 +28 [979] -25 +116 [1067]
Z3 -25 +114 [1067] -25 +114 [1067]

Results. Tables 1 and 2 and Fig. 3 sum up our experimental results, which have
all been cross-checked for consistency. Table 1 reports the number of successes
(sat or unsat) and failures (unknown), plus total solving times. The • sign



indicates formulas preprocessed with our approach. In that case it is impossible
to correctly answer unsat (no wic checking), the unsat line is thus N/A. Since
Boolector does not support quantified ABV formulas, we only give results with
our approach enabled. Table 1 reads as follow: of the 1269 SMT-LIB formulas,
standalone Z3 solves 426 formulas (261 sat, 165 unsat), and 366 (all sat) if
preprocessed. Interestingly, our approach always improves the underlying solver
in terms of solved (sat) instances, either in a significant way (SMT-LIB) or
in a modest way (Binsec). Yet, recall that in a software verification setting
every win matters (possibly new bug found or new assertion proved). For Z3•, it
also strongly reduces computation time. Last but not least, Boolector• (a pure
QF-solver) turns out to have the best performance on sat-instances, beating
state-of-the-art approaches both in terms of solved instances and computation
time.
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Fig. 3: Overhead in formula size

Table 2 substantiates the complementarity
of the different methods, and reads as follow:
for SMT-LIB, Boolector• solves 224 (sat)
formulas missed by Z3, while Z3 solves 86 (sat)
formulas missed by Boolector•, and 485 (sat)
formulas are solved by either one of them.

Fig. 3 shows formula size averaging a 9-fold
increase (min 3, max 12): yet they are easier
to solve because they are more constrained.
Regarding performance and overhead of the
tainting process, taint time is almost always
less than 1s in our experiments (not shown
here), 4min for worst case, clearly dominated
by resolution time. The worst case is due to a
pass of linearithmic complexity which can be
optimized to be logarithmic.
Pearls. We show hereafter two particular applications of our method. Table 3
reports results of another symbolic execution experiment, on the grub example.

Table 3: GRUB example

Boolector• Z3
sat 540 1

# unsat N/A 42
unknown 355 852
total time 16 732 159 765

On this example, Boolector• completely out-
performs existing approaches. As a second
application, while the main drawback of our
method is that it precludes proving unsat,
this is easily mitigated by complementing the
approach with another one geared (or able)
to proving unsat, yielding efficient solvers for
quantified formulas, as shown in Table 4.
Conclusion. Experiments demonstrate the relevance of our taint-based technique
for model generation. (RQ1 ) Results in Table 1 shows that our approach greatly
facilitates the resolution process. On these examples, our method performs better
than state-of-the-art solvers but also strongly complements them (Table 2). (RQ2 )
Moreover, Table 1 demonstrates that our technique is highly effective at lifting
quantifier-free solvers to quantified formulas, in both number of sat answers



Table 4: Best approaches

former new
Z3 B• B• . Z3

SM
T

-L
IB sat 261 399 485

unsat 165 N/A 165
unknown 843 870 619

time 270 150 350 94 610

B
in

se
c sat 953 1042 1067

unsat 319 N/A 319
unknown 149 379 35

time 64 761 1 152 1 169

and computation time. Indeed, once lifted,
Boolector performs better (for sat-only) than
Z3 or CVC4 with full quantifier support. Fi-
nally (RQ3 ) our tainting method itself is very
efficient both in time and space, making it
perfect either for a preprocessing step or for
a deeper integration into a solver. In our cur-
rent prototype implementation, we consider
the cost to be low. The companion technical
report contains a few additional experiments
on bitvectors and integer arithmetic, including
the example from Fig. 1.

8 Related work

Traditional approaches to solving quantified formulas essentially involve either
generic methods geared to proving unsatisfiability and validity [16], or complete
but dedicated approaches for particular theories [8,36]. Besides, some recent
methods [22,20,31] aim to be correct and complete for larger classes of theories.

Generic method for unsatisfiability. Broadly speaking, these methods itera-
tively instantiate axioms until a contradiction is found. They are generic w.r.t. the
underlying theory and allow to reuse standard theory solvers, but termination is
not guaranteed. Also, they are more suited to prove unsatisfiability than to find
models. In this family, E-matching [16,13] shows reasonable cost when combined
with conflict-based instantiation [30] or semantic triggers [17,18]. In pure first-
order logic (without theories), quantifiers are mainly handled through resolution
and superposition [1,26] as done in Vampire [33,24] and E [34].

Complete methods for specific theories. Much work has been done on
designing complete decision procedures for quantified theories of interest, notably
array properties [8], quantified theory of bitvectors [36,23], Presburger arithmetic
or Real Linear Arithmetic [9,19]. Yet, they usually come at a high cost.

Generic methods for model generation. Some recent works detail attempts
at more general approaches to model generation.

Local theory extensions [22,2] provide means to extend some decidable theo-
ries with free symbols and quantifications, retaining decidability. The approach
identifies specific forms of formulas and quantifications (bounded), such that
these theory extensions can be solved using finite instantiation of quantifiers
together with a decision procedure for the original theory. The main drawback is
that the formula size can increase a lot.

Model-based quantifier instantiation is an active area of research notably
developed in Z3 and CVC4. The basic line is to consider the partial model under
construction in order to find the right quantifier instantiations, typically in a
try-and-refine manner. Depending on the variants, these methods favors either
satisfiability or unsatisfiability. They build on the underlying quantifier-free solver



and can be mixed with E-matching techniques, yet each refinement yields a solver
call and the refinement process may not terminate. Ge and de Moura [20] study
decidable fragments of first-order logic modulo theories for which model-based
quantifier instantiation yields soundness and refutational completeness. Reynolds
et al. [30], Barbosa [3] and Preiner et al. [28] use models to guide the instantiation
process towards instances refuting the current model. Finite model quantifier
instantiation [31,32] reduces the search to finite models, and is indeed geared
toward model generation rather than unsatisfiability. Similar techniques have
been used in program synthesis [29].

We drop support for the unsatisfiable case but get more flexibility: we deal
with quantifiers on any sort, the approach terminates and is lightweight, in the
sense that it requires a single call to the underlying quantifier-free solver.

Other. Our method can be seen as taking inspiration from program taint
analysis [15,27] developed for checking the non-interference [35] of public and
secrete input in security-sensitive programs. As far as the analogy goes, our
approach should not be seen as checking non-interference, but rather as inferring
preconditions of non-interference. Moreover, our formula-tainting technique is
closer to dynamic program-tainting than to static program-tainting, in the sense
that precise dependency conditions are statically inserted at preprocess-time,
then precisely explored at solving-time.

Finally, Darvas et al. [11] presents a bottom-up formula strengthening method.
Their goal differ from ours, as they are interested in formula well-definedness
(rather than independence) and validity (rather than model generation).

9 Conclusion

This paper addresses the problem of generating models of quantified first-order
formulas over built-in theories. We propose a correct and generic approach based
on a reduction to the quantifier-free case through the inference of independence
conditions. The technique is applicable to any theory with a decidable quantifier-
free case and allows to reuse all the work done on quantifier-free solvers. The
method significantly enhances the performances of state-of-the-art SMT solvers
for the quantified case, and supplements the latest advances in the field.

Future developments aim to tackle the definition of more precise inference
mechanisms of independence conditions, the identification of interesting sub-
classes for which inferring weakest independence conditions is feasible, and the
combination with other quantifier instantiation techniques.
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