
Format unraveled

Richard Bonichon1 & Pierre Weis2

1 : CEA LIST, Laboratoire de Sûreté des Logiciels
PC174, 91191 Gif-sur-Yvette Cedex

richard.bonichon@cea.fr
2 : INRIA Paris,

2 rue Simone Iff, CS 42112, 75589 Paris Cedex 12
pierre.weis@inria.fr

Abstract

Pretty-printing can be described as finding a good-looking solution to typeset data according
to a set of formatting conventions. Oppen [6] pioneered the field with an algorithmic solution
to pretty-printing, using the notions of boxes and break hints. The Format module is a direct
descendant of this work: it is unfortunately often misunderstood or even misused. The first goal
of this article is to enhance the available documentation about Format by explaining its basic
and advanced features but also its relationship and differences with Oppen’s seminal work. The
second goal is to investigate the links that Format has with the document-based pretty-printing
tradition fostered by the lazy programming community [3, 4, 9, 10].

1. Introduction

Reading and printing data are usual parts of day-to-day programming. As a witness to the truth of
this statement, OCaml has two modules concerned with reading data (Pervasives, Scanf) and even
more — three — with printing (Pervasives, Printf, Format).

Usually, we want to obtain a certain regularity in this output, to have it formatted. A formatted
output can be made to look more or less pretty. The definition of prettiness as a value is a rather
philosophical matter [7]: nonetheless this is the goal of pretty-printing. That is, a pretty-printing
module should have functionalities in order to help output structured data in a good-looking way.

In OCaml, this can be achieved via the standard library with one of the two modules dedicated to
the formatted output of data. On the one hand, there is the Printf module, which can be roughly
described as an extended look-alike of the C family of printf functions. On the other hand, there is
the Format module. At first sight, it seems rather similar to a fusion of Printf and Pervasives. But
it comes with extra advanced capabilities which are often misused or misunderstood. The first goal
of this article is to document extensively what the Format module offers, how it works (and why it
works that way), and how to use it.

Other programming languages, such as Python or Java, often have a format function or class.
However, these are usually not akin to OCaml’s Format module, and more like Printf. Indeed, their
names probably come from the fact that they are based upon format strings.

Pretty-printing a la Format seems to be more common in functional languages. The Format
module is indeed based on early work done by Derek Oppen [6]. Haskell has for example received
a good amount of attention through, first, the works of Hughes [3] and Wadler [10]. Their work
relies on the exploration of algebraic properties of Oppen-like pretty-printing and traditionally defines
pretty-printing combinators.

1

richard.bonichon@cea.fr
pierre.weis@inria.fr

Bonichon & Weis

This line of work reaches the same level of efficiency as Oppen’s algorithm only with Swierstra
and Chitil [9]: their functional pearl describes a combinator-based pretty-printing algorithm that have
the same space (w.r.t to the line width) and time (w.r.t to the length of the stream) complexities as
Oppen’s while retaining a lazy functional flavor. Later, Kiselyov, Peyton-Jones and Sabry [4] show
how to program an elegant incremental pretty-printer using yield.

The contributions of this paper are the following:

• it revisits, complements and extends the standard documentation available for Format;

• it explains the differences between Oppen’s original algorithm and what Format offers;

• it discusses how Format differs from document-based pretty-printers advocated by the algebraic
pretty-printing tradition and investigates how it can be made similar to them.

2. A brief history of Format: a quest for abstraction

The Format module has a long history of development, starting from the early implementation of
Oppen’s algorithm in Caml circa 1985 to the full-fledged module we describe in this article.

The first implementation started for the compiler internal needs to print error messages and
computed values. So far so good, the pretty-printer was able to decently display types and values on
the terminal, when Caml was only available as an interactive system. The first step toward abstraction
was to encapsulate the pretty-printer as a module and export it to user land.

Then, the problem arose not to mix compiler messages and warnings with the output of the user’s
program. It was time to add separate printing functions for stderr, stdout and general output channels.
The idea of abstracting the low-level output device from the pretty-printing engine was born.

To allow parallel pretty-printing to several files and output channels, the entire pretty-printer had
to be abstracted. Here comes the Format.formatter data structure: a formatter encapsulates a
complete pretty-printing engine with all its state and specific parameters into a value that can be
manipulated in programs.

Around 1990, Caml-Light added basic format strings to properly typecheck the printf function
and provide a safe use of format strings. The introduction of a Format specific version of the printf
family of functions gave rise to the addition of specifications for boxes and break hints management
directly into format strings. Polymorphic printing with explicit formatter arguments was then made
available via conversion %a (see Section 5).

The quest for abstraction went on with semantic tags (Section 6), printing with continuations, and
recently output abstraction with symbolic printing1. The future is rich with further endeavors (see
Section 10).

3. Format basics

Format can write on anything that can receive characters, such as strings, buffers, channels or streams.
In this section, for sake of simplicity, we focus on basic primitives writing on the terminal (stdout).
Format’s basic primitives can be divided into two sets: primitives to print elementary values and
primitives for indentation and splitting lines (Sections 3.1 and 3.2).

Printing elementary values in Format is similar to printing those values with the fundamental
Pervasives module. One can print characters, strings, integers, floats and booleans with print_char,
print_string, print_int, print_float and print_bool. The print_newline primitive in Format

1https://github.com/ocaml/ocaml/pull/615

2

https://github.com/ocaml/ocaml/pull/615

Format unraveled

prints a newline character as the corresponding Pervasives function, buts its impact on the pretty-
printing engine is major and should not be underestimated (see Section 7).

3.1. Break hints

A break hint is an explicit annotation to tell the pretty-printing engine where it can split the line. A
break hint also indicates the amount of spaces to add to the current indentation when splitting the
line.

Break hints for the pretty-printing engine can be given with the print_space, print_cut and
print_break functions.

The first function outputs a space break hint: it outputs a typographical space if there is no need
to split the line or it splits the line according to the box discipline without adding indentation.

The second one outputs a cut break hint: it does nothing if there is no need to split the line or it
splits the line according to the box discipline (no indentation added).

The last one outputs a full break hint: it has two parameters nspaces and offset. It outputs nspaces
typographical spaces if there is no need to split the line or it splits the line according to the box
discipline, adding offset spaces to the current indentation value. Those integer parameters can be
negative: a negative nspaces is treated as 0, while a negative offset reduces the indentation of the next
line. Note that space and cut break hints are convenient shortcuts for specific full break hints.

3.2. Boxes

A pretty-printing box, or simply a box, is the fundamental device which delimits a region with a
coherent discipline of line-splitting and indentation.

There are five line-splitting disciplines corresponding to five types of boxes, with different effects
on the output. Those types are h, v, hv, hov and b. h stands for horizontal, v for vertical, hv for
horizontal/vertical, hov for horizontal-or-vertical and b for basic.

Each box type is respectively opened with open_hbox: unit -> unit, open_vbox: int -> unit,
open_hvbox: int -> unit, open_hovbox: int -> unit, open_box: int -> unit. When lines can
be split, boxes have an extra indentation argument that specifies the amount of extra spaces added
to the current indentation of the block when splitting lines. Let us now detail these boxes (Figure 1
shows a comparative look at their behaviors).

let pp_int_list open_box l =
let rec pp = function

| [] -> ()
| [x] -> print_int x
| x :: xs ->

print_int x; print_space (); pp xs in
open_box 0; pp l; close_box ()

let pp_int_list_h =
pp_int_list (fun _ -> open_hbox ())

and pp_int_list_v = pp_int_list open_vbox
and pp_int_list_hv = pp_int_list open_hvbox
and pp_int_list_hov = pp_int_list open_hovbox
and pp_int_list_b = pp_int_list open_box;;
set_margin 8

1 2 3 4 5

(a) h-box

1
2
3
4
5

(b) v-box

1 2 3 4
5

(c) hov-box

1 2 3 4
5

(d) b-box

1
2
3
4
5

(e) hv-box
(non-fitting)

1 2 3 4 5

(f) hv-box
(fitting)

Figure 1: Comparing box splitting discipline (margin 8, except margin 10 for 1f)

3

Bonichon & Weis

Horizontal boxes A horizontal box or h-box groups contents to be printed on a single line, thus
hiding the column limits of the pretty-printing engine. One idiosyncrasy to h-boxes: if the size of a
horizontal box is bigger than the margin size left on the output device, its whole contents is printed
on the next line.
Vertical boxes A vertical box or v-box groups contents whose elements must each be printed on a
separate line.
Horizontal/vertical boxes A horizontal/vertical box or hv-box has two mutually exclusive
behaviors: if the box fits on a single line, the box is said fitting and behaves as a horizontal box;
otherwise, the box is said non-fitting and behaves as a vertical box.
Horizontal-or-vertical boxes A horizontal-or-vertical box or hov-box is a compacting box: it
outputs its contents on the same line while there is enough room left on the line. Then, the next
break hint splits the line and the output goes on. A text output in a horizontal-or-vertical box with
all spaces used as break hints is similar to left-justified paragraph in a text processor.
Basic boxes A basic box or b-box is a compacting box similar to the horizontal-or-vertical box with
a different way to handle break hints: if splitting the line reduces the current indentation, a break
hint splits the line, even if there is still enough room left on the current line.
Comparing compacting boxes: b-box versus hov-box Figure 1 shows that hov-boxes and b-
boxes behave the same in simple cases. However, printing complex material with nested boxes shows
up the difference.

Figure 2 prints the same list of integers with the same pretty-printing function as Figure 1. In
addition, Figure 2 uses a global compacting box to properly pretty-print the list between brackets.
Both parts of Figure 2 run the exact same code except for the enclosing box: a hov-box for Figure 2a
and a b-box for Figure 2b. The right margin is set to 8, thus there is enough room to print the closing
bracket on the second line. In the case of the hov-box, there is no need to split the line at the cut break
hint before the closing bracket. In the b-box case, the cut break hint splits the line, since splitting the
line reduces the current indentation, and the closing bracket is displayed on a new line. This behavior
aligns opening and closing delimiters, thus enforcing the list structure.

This small example is too simple to show the true benefit of the b-box behavior. A more complex
example, for instance printing a tuple of lists of records would be more telling. If such a value is printed
within a hov-box, all the closing parentheses, brackets and braces appears at the end of line, possibly
all in a row on the last line: the hov-box minimizes the number of lines of the output. This is less
readable than using a b-box, which may add extra lines to emphasize the box structure, printing each
closing character on a new line, properly indented with its opening sibling. In short, the b-box visually
enhances the structure of the value; that is why a b-box is also known as a structural compacting box.

open_hovbox 0;
print_string "[";
pp_int_list_hov l;
print_cut ();
print_string "]";

close_box ();;
[1 2 3
4 5]

(a) Printing a list inside a hov-box

open_box 0;
print_string "[";
pp_int_list_hov l;
print_cut ();
print_string "]";

close_box ();;

[1 2 3
4 5

]

(b) Printing a list inside a b-box

Figure 2: Behavior comparisons: b-box vs. hov-box (margin 8)

3.3. Remarks

Before concluding this section, we would like to provide a bit of context by discussing the reasons why
Format’s primitives and behaviors are profoundly different to common text processors and to share
some perspective with respect to what has been added thus far to Oppen’s algorithm.

4

Format unraveled

3.3.1. Pretty-printing versus text processing

The break treatment in Format is the reverse of usual text processing software where a normal space
is breakable and you need indicate hard (non-breaking) spaces. This salient difference is on purpose
and due to the somewhat opposite design and goals of text processing and pretty-printing software.

In text processing, the input is structured via paragraphs, sections and subsections. Paragraphs
are free flowing streams of words separated by spaces and punctuation signs. The job of the text
processor is to respect and emphasize section markers and properly split paragraphs; clearly, spaces
in paragraph should default to breakable, while spaces in section titles are certainly unbreakable. The
adoption of such spacing conventions leads to almost no breakable annotations for spaces.

In text processing, all breakable spaces behave the same: they all output a typographical space or
open a new line starting at margin. Furthermore, splitting a paragraph after a word or the next is not
a dramatic decision: a document typeset without following best practice remains perfectly readable
and understandable.

By contrast, in pretty-printing, the primary input is a computed value of some structured data.
The job of the pretty-printer is to help the programmer to properly split the lines to respect and
emphasize the internal structure of the value. Here, splitting a line and indenting the next one is
of utmost importance to highlight this internal structure. Hence, the pretty-printer provides ways
to carefully fix the indentation; in particular, Format boxes and break hints carry an argument to
indicate the indentation of new lines.

In pretty-printing, break hints fix the indentation of lines, so each break is specific. Furthermore,
splitting a line at this break hint or at the next one is a dramatic decision that could wreck havoc the
final document to the point that it becomes unreadable and difficult or even impossible to understand.
This is precisely the case for some programming languages where indentation is significant such as
Python and Haskell.

As a final fundamental contrasting difference, the text in text processing is mostly hand-written
and contains hand-written spaces, when the text in pretty-printing is mostly machine-generated by
hand-written programs that compose small pieces of text separated by machine-generated break hints.

3.3.2. Oppen’s algorithm

Oppen’s algorithm [6] is at the core of Format pretty-printing engine and also the basis for algebraic
studies of the lazy community. This section sums up its main components and insights.

In his article, Oppen introduces the notions of box and break hint (called a blanks). Inside a box,
blanks can be consistent, causing a Formathv-box or inconsistent, yielding a Formathov-box. Each
blank has a length and an offset, just as in Format.

The algorithm is based on the interplay between two functions: print and scan. The latter represents
the stream to be pretty-printed. The former effectively prints the material: a string is always printed;
if a box is open, its indentation is pushed on a stack; if one is closed, it is popped; if a blank is received,
it is printed if it fits on the line otherwise the line is split and indented according to this blank and
the current box (on the top of the stack). The latter appends tokens to a buffer: to each string and
openbox token, it also associates its length; to each blank, it associates the length of the blank plus
the length of the next block, in order to check if it can print the coming block.

The core of the algorithm is very similar to Format internals. Format retains the same linear
complexity as Oppen’s proposal. Furthermore, Format adds the two sub-components of the hv-box,
the h-box and the v-box, as well as the b-box. It also supports fully typed format strings, semantic tags
and, last but not least, abstraction.

5

Bonichon & Weis

4. Format strings

In OCaml, there exists a basic notion of format string value with a corresponding format string type.
A format string value is a concise way of specifying a sequence of value arguments, in particular the
type and shape of each argument of the sequence. Since OCaml language constructions have to be
statically typechecked, arguments of input/output procedures should be specified so that their types
can be verified. Format string values are the natural polymorphic way to specify all the arguments
of advanced input/output functions: indeed, format string values specify any sequence of values to be
read using module Scanf or printed using modules Format or Printf.

4.1. Syntax of format strings

The syntax of format strings is identical to the syntax of OCaml basic strings, namely a sequence of
characters between double quotes. However, sequence of characters inside format strings must obey a
specific and constraint syntax to describe types and shapes of arguments.

Following the C tradition, argument specifications are introduced by special marker %, followed
by a letter giving the type of the argument. For instance, %i indicates an integer argument and
specifies type int for this argument. Still following the C tradition, argument specifications are called
conversions. OCaml format strings support specific conversions for basic types, such as string with
%s, float with %f, bool with %b, char with %c, and so on.

Apart from types, argument shapes may be specified via several means. One can indicate an
alternate conversion: for instance all conversions %d, %x, %X, and %o specify an integer argument, but
each of those conversions fixes a different notation for the integer. Indeed, %d prints (or reads) decimal
digits, %x or %X hexadecimal digits, and %o octal digits. Similarly, both %s and %S specify a string
value, but conversion %S specify a string delimited with double quotes and using the OCaml lexical
conventions to escape characters. Also, one can add optional size and precision specifications by
extra characters after the conversion marker (for instance %4.12g), as well as padding and alignment
annotations, which are absent from the basic functionalities described in Section 3.

Format strings can also contain material unrelated to argument specifications: the formatting
indications do not specify the type or shape of arguments but the presentation of arguments. The
presentation indicates how arguments should appear in a document (i.e. in a sequence of characters).
That is, a formatting indication states how to display an argument when printing, or how to read an
argument when scanning. In format strings, such a formatting indication is introduced by the special
marker ’@’, followed by a sequence of letters specifying the indication.

Note that formatting indications do not interfere with the typing of format strings. Interpretation
of formatting indications may also be module specific: some formatting indications for reading are not
meaningful for printing and vice versa.

There is a complete set of formatting indications to drive the Format pretty-printing engine:
opening and closing formatting boxes, emitting break hints, even flushing the pretty-printing engine
to terminate a pretty-printing routine.

For instance "@[" opens a box and "@]" closes the last opened box. Similarly, formatting indication
"@ " emits a space break hint and "@," emits a cut break hint. When a formatting indication
needs an argument, it has to be enclosed between characters '<' and '>'; for instance, adding a
box kind argument to the box opening formatting indication gives "@[<h>", "@[<v>", "@[<hv>",
"@[<hov>", and "@[" to open the corresponding boxes (defined in Section 3.2). Figure 3 shows
how to reproduce Figure 1 with boxes in format strings. If another additional argument is necessary,
simply add it after a space: "@[<v 2>" opens a vertical box with 2 as indentation increment. Similarly,
a full break hint is introduced by "@;" and needs two integer arguments: it is written as "@;<1 2>".

The last set of characters in format strings are plain characters, that is any character not preceded

6

Format unraveled

open Format

let pp_format box_type ppf l =
let pp_list ppf =

List.iter (fprintf ppf "%d@ ") in
fprintf ppf "@[<%s>%a@]" box_type pp_list l

let pp_format_h = pp_format "h"
and pp_format_v = pp_format "v"
and pp_format_hv = pp_format "hv"
and pp_format_hov = pp_format "hov"
and pp_format_b = pp_format "b"

Figure 3: Box type test with format strings (results as in Figure 1)

by the conversion marker % nor by the formatting indication marker @. This is regular text included
in a format string to be output or read as verbatim material. Note that markers are considered plain
characters if preceded by a % character; write %% or %@ to obtain a plain % or a plain @ character.

Do not be confused by the specific usage of format strings: they are first-class citizen of the
language. Hence, a format string can be returned as a result, passed as an argument or manipulated
as any other value. For instance, the predefined infix operation ^^ implements the concatenation of
format strings: fmt1 ^^ fmt2 is equivalent to format string fmt1 followed by format string fmt2.
The function Pervasives.string_of_format gives the string representation of any format string.
Conversely, Pervasives.format_of_string returns the format string value corresponding to a string
with known characters (a string literal). To convert to format string, a statically unknown string, for
example a string read from a file, use Scanf.format_from_string (see Section 4.3).

Caveat: pattern matching for format strings is not yet available but comparing their string
representations may help.

4.2. Typechecking format strings

The typing of format strings is specific, complex, and highly polymorphic. Indeed, the general type
constructor able to accommodate all format strings peculiarities needs 6 different type variables: this
holds the record for the most polymorphic datatype of the entire OCaml library.

Format strings have a general and highly polymorphic type ('a, 'b, 'c, 'd, 'e, 'f) format6.
Let’s give more meaningful names to those type variables renaming them respectively as
'functional_type, 'low_level_device, 'poly_printer_result, 'poly_reader_functional_type,
'poly_reader_result, 'result_type.

'b ('low_level_device) is the type of the low-level device for the format string, an input device for
scanf-like functions and an output device for printf-like functions

'f ('result_type) is the result type of the format string, it is the result type of the receiver for
scanf-like functions and the result type of printf-like functions

'a ('functional_type) is 'argument_sequence -> 'result_type, where 'argument_sequence is
the type of the sequence of arguments to print or of values to read. For the Scanf family of
functions 'functional_type is also the type of the receiver function.

'c ('poly_printer_result) is the result type of polymorphic pretty-printers required by %a
conversions in the format string (hence a polymorphic pretty-printer printing values of type 't
has type 'low_level_device -> 't -> 'poly_printer_result). Conversion %a is detailed in
Section 5.

'd ('poly_reader_functional_type) is 'poly_reader_sequence -> 'poly_reader_result, where
'poly_reader_sequence is the type of the sequence of polymorphic readers required by all the

7

Bonichon & Weis

%r conversions in the format string, and 'e is the result type of 'poly_reader_functional_type
(hence a polymorphic reader reading values of type 't has type 'low_level_device -> 't).

4.3. Typing primitive functions on format strings

The function string_of_format maps any format string to its corresponding string representation.
Hence, its type scheme is naturally: ('a, 'b, 'c, 'd, 'e, 'f) format6 -> string.
On the other hand, the type of format_of_string is

('a, 'b, 'c, 'd, 'e, 'f) format6 -> ('a, 'b, 'c, 'd, 'e, 'f) format6
This is surprising in more than one way. First, because the input type of the function is not string!
Second, because that type is an instance of the type scheme of the identity function (namely, the type
of identity restricted to format strings).
So, in the first place, how can format_of_string be applied to a value of type string when its source
type is _ format6 ? However, the function indeed converts a string to a format string, as in

format_of_string "%d";;
- : (int -> '_a, '_b, '_c, '_d, '_d, '_a) format6 = "%d"

There is some black magic at work here. It indeed lies in the typechecking of string constants. In
presence of a string constant expression, the typechecker follows a pragmatic rule: if the expression is
expected to be a format string, then its contents is analyzed to discover its format6 type; otherwise,
it gets type string. For instance:

("%d" : _ format6);;
- : (int -> 'a, 'b, 'c, 'd, 'd, 'a) format6 = "%d"

On the other hand, if the string constant is bound to identifier s, then it gets type string and cannot
be applied to format_of_string anymore:

let s = "%d" in format_of_string s;;
Error: This expression has type string but an expression was expected of type

('a, 'b, 'c, 'd, 'e, 'f) format6

The documentation clearly states it: format_of_string converts a string literal to a format string.
In fact, format_of_string simply checks that a string constant is a valid format string.

If you need to convert any string, not only a literal string, you need Scanf.format_from_string
that can read any string and convert it using a format string pattern. Scanf.format_from_string has
type string -> ('a, 'b, 'c, 'd, 'e, 'f) format6 -> ('a, 'b, 'c, 'd, 'e, 'f) format6.
The first string argument is simply the string to be converted, but the second argument is more
intriguing: it is the model of the expected format string result: a static witness for the type of the
expected format string result.

let s = "Price = %.2g" in Scanf.format_from_string s "%f";;
- : (float -> '_a, '_b, '_c, '_d, '_d, '_a) format6 = "Price = %.2g")

Scanf.format_from_string indeed verifies that the given string can be assigned the type of the
second argument format string pattern.

5. Polymorphic printing

Format’s killer feature trio is fprintf, formatter, %a: this is the way to polymorphic and
compositional pretty-printing.

8

Format unraveled

A formatter is the abstraction of a complete pretty-printing engine that can be specialized to
various tasks: the low-level output device, the parameters for margins, the treatment of various
semantic aspects of the pretty-printing engine can all be encapsulated into a formatter. For
instance, use formatter_of_out_channel to get a formatter that outputs to a given out_channel, or
formatter_of_buffer to get a formatter that outputs to an extensible string buffer. A routine with
an explicit formatter argument is completely generic with respect to the pretty-printing engine and
is called a pretty-printer. According to its formatter argument, the routine can write to any low-level
output device; more importantly, it can behave according to any high-level pretty-printing abstraction
that can be defined as a formatter.

The function Format.fprintf is such a generic pretty-printer and in fact the most general in
Format. fprintf takes a Format.formatter as first argument (in the name fprintf, f stands for
formatter). This way, fprintf subsumes the entire printf family: choosing the formatter argument
turns fprintf to a specific function. For instance, printf, eprintf, sprintf are equivalent to using
Format.fprintf with std_formatter, err_formatter, str_formatter.

The polymorphic conversion specification %a is a specific addition to OCaml format strings.
Intuitively, %a means “use the following function to convert the next argument”. So in fact %a specifies
two arguments, a function f and a value x so that f can print value x. More precisely, f must
print x on the low-level device specified by the format string that includes the %a conversion. Hence,
if fmt has type (_, 'low_level_device, _) format6 and x has type 't, then f must have type
'low_level_device -> 't -> In short, f must be a pretty-printer.

Conversion %a is particularly noteworthy because, as the type indicates, the conversion is
polymorphic. Furthermore, since %a also abstracts a function, it allows composition of pretty-printers.
In short, %a is the truly functional format string conversion!

Conversion %a and fprintf at work To illustrate pretty-printer composition, we write a pretty-
printer for a simple expression algebraic datatype, then a polymorphic pretty-printer for pairs of
values.

let pp_int ppf = fprintf ppf "%d"

let pp_pair pp_x pp_y ppf (x, y) =
fprintf ppf "@[(%a,@ %a)@]" pp_x x pp_y y

let pp_int_pair = pp_pair pp_int pp_int

let rec pp_expr ppf = function
| Int n -> fprintf ppf "%i" n
| Add (e1, e2) ->

fprintf ppf "(%a@ +@ %a)"
pp_expression e1 pp_expression e2

and pp_expression ppf =
fprintf ppf "@[%a@]" pp_expr

Figure 4: Format.fprintf at work

The pretty-printer for simple integer expressions with addition uses the format string "(%a +
%a)" to write additive expressions. The version given in Figure 4 adds break hints and ensure proper
boxing through two mutually recursive pretty-printers. As we can see, the composition of pretty-
printers via the %a conversion has one peculiarity: the formatter argument is implicitly applied to the
pretty-printing function argument.

The polymorphic pair pretty-printer uses two %a conversions to print each element of the pair;
hence, it needs abstract two pretty-printers and a formatter. Then it uses a format string like "(%a,
%a)". Adding formatting indications to the format string, we get the pp_pair function of Figure 4.

To define a pretty-printer for specific pairs, simply follow the usual functional programming way
and apply pp_pair to two pretty-printers as in pp_int_pair.

9

Bonichon & Weis

6. Semantic tags

Format offers another extension to Oppen’s original proposal. It has the ability to interpret specific
pretty-printing hints called semantic tags. In format strings, a tagged section is delimited by
"@{<t> ... @}" for tag t. The interpretation of those tags is purely user-driven as the programmer
must supply appropriate open_tag and close_tag functions. These come in two flavors: marking
and printing when tags are respectively opened and closed.
Tag printing functions are intended to emit formatting instructions (open a box, put a break, etc.)
while tag marking functions simply emit a 0-length string marker associated to the tag. Basic use of
tag marking functions is for example to print opening and closing markers in HTML. As tag markers
are considered of length 0, they do not interfere with line splitting or indentation. Also note the order
of invocation of tag handling functions: when a tag is opened, print_open_tag is called first then
open_mark_tag; when a tag is closed, close_mark_tag is called first, then print_close_tag.

We illustrate using semantic tags with two examples. The first example uses tags to optionally
enable color printing for terminal outputs. The second provides two different outputs from the same
tagged content. Both cases are handled almost seamlessly with semantic tags.

Colors The first example consists in coloring the output, for example for a logging module. Tags
can be turned on or off depending on the output device. The interpretation of how to color the output
could even be device dependent. This example has two modes: when the output is done on a terminal,
tags emit ANSI color escape sequences, otherwise they are left uninterpreted. The latter is better if
the output formatter is a device where color escape sequences have no special meaning.

In this example (see Figure 5), we restrict ourselves to three foreground colors: yellow, purple and
cyan, whose corresponding escape sequences2 are 33, 35 and 36. All attributes are off by default (hence
the additional 0), except for yellow which is bold (represented by the value 1). The mark_close_tag
function always emits a “reset to default” sequence.

Different outputs for the same tags Tags provide means to have different concrete outputs for
the same initial data. In this case, tags can be seen as ways to embed simple node annotations into
the output. One could annotate the pretty-printer of any datatypes with simple tags and process
these tags differently according to the desired output (you could thus “serialize” a type through tags).

The example has two simple outputs, one in HTML and one in Emacs org [2] format for
the same initial set of tags. The code is shown in Figure 6. Note that the print_open_tag
and print_close_tag functions do not have a formatter argument: they would always print to
Format.std_formatter if left alone. Thus, it is necessary to bind them to the proper formatter
whenever using them.

For HTML, we want the closing tags to be indented the same as its opening companion.
This is the primary use of a basic box. Then, we want all list items to be vertically aligned inside
the list. This desired behavior mixes boxes and printing, thus it can only be defined in tag printing
functions and not in tag marking functions. Note that we print tags as 0-length items. In effect,
this mimics what marking functions do.

In org, lists are simple vertically aligned paragraphs, preceded by a - sign. The usual notion of
paragraph is handled by a hov-box in the print_open_tag and print_close_tag functions.

2http://ascii-table.com/ansi-escape-sequences.php

10

http://ascii-table.com/ansi-escape-sequences.php

Format unraveled

let str_to_esc_seq color_name =
match String.lowercase color_name with
| "cyan" -> Some "0;36"
| "purple" -> Some "0;35"
| "yellow" -> Some "1;33"
| _ -> None

let color_tag_funs =
{ mark_open_tag = (fun tag_string ->

match str_to_esc_seq tag_string with
| None -> ""
| Some eseq -> sprintf "\027[%sm" eseq);

mark_close_tag = (fun _ -> "\027[0m");
print_open_tag = (fun _ -> ());
print_close_tag = (fun _ -> ()); }

let pp_colorized ppf fmt =
pp_set_formatter_tag_functions ppf color_tag_funs;
let mark_tags = pp_get_mark_tags ppf () in
pp_set_mark_tags ppf true;
kfprintf (fun ppf -> pp_set_mark_tags ppf mark_tags)

ppf fmt ;;

pp_colorized std_formatter
"@[<v 0>Default@ \
@{<cyan>Cyan@}@ \
@{<yellow>Bold Yellow@}@ \
@{<purple>Purple@}@}@ \
@{<uninterpreted>Default@}@]@."

Figure 5: Colored terminal output with semantic tags

open Format

let fmt = format_of_string
"@[<v 0>\
@{<p>This paragraph precedes a list:@}@ \
@{\

@{This@ first@ item@ might@ be@ too long@}\
@{Second item@}\

@}\
@]@.\

"

let dedicated_pp tag_functions ppf fmt =
pp_set_margin ppf 35;
pp_set_formatter_tag_functions ppf tag_functions;
let mark_tags = pp_get_mark_tags ppf ()
and print_tags = pp_get_print_tags ppf () in
pp_set_mark_tags ppf true;
pp_set_print_tags ppf true;
kfprintf (fun ppf ->

pp_set_mark_tags ppf mark_tags;
pp_set_print_tags ppf print_tags)

ppf fmt

let html_tag_functions ppf =
let mark_open_tag s =

if s <> "ul" then "<" ^ s ^ ">" else ""
and print_open_tag = function

| "ul" -> fprintf ppf "@[@<0>%s@[<v 2>" ""
| "li" -> fprintf ppf "@ @[<hov 0>"
| "p" -> fprintf ppf "@[<hov 0>"
| _ -> ()

and print_close_tag = function
| "ul" -> fprintf ppf "@]@,@<0>%s@]" ""
| "li" -> fprintf ppf "@]"
| "p" -> fprintf ppf "@]"
| _ -> ()

and mark_close_tag s =
if s <> "ul" then "</" ^ s ^ ">" else ""

in { mark_open_tag; mark_close_tag;
print_open_tag; print_close_tag; }

let pp_html ppf =
dedicated_pp (html_tag_functions ppf) ppf ;;

pp_html std_formatter fmt

let org_tag_functions ppf =
let mark_open_tag _ = ""
and print_open_tag = function

| "ul" -> fprintf ppf "@[<v>"
| "li" -> fprintf ppf "- @[<hov>"
| _ -> ()

and print_close_tag = function
| "ul" -> fprintf ppf "@]"
| "li" -> fprintf ppf "@]@ "
| _ -> ()

and mark_close_tag _ = ""
in { mark_open_tag; mark_close_tag;

print_open_tag; print_close_tag; }

let pp_org ppf =
dedicated_pp (org_tag_functions ppf) ppf ;;

pp_org std_formatter fmt

<p>This paragraph precedes a list:</p>

This first item might be too long
Second item

This paragraph precedes a list:
- This first item might be

too long
- Second item

Figure 6: Tag interpretation for different outputs

11

Bonichon & Weis

7. Guidelines for using Format

Proper use of Format requires a certain discipline to maximize its help. Here are some guidelines.

Guideline 1 (Boxing rules). Before using Format, thou shalt know thy boxes. In particular:
1. If you do not open a box, there is no guarantee and no semantics.

2. When the pretty-printer is reset, it empties all its stacks and queues and, as of today, open a
b-box with offset zero. This has changed in the past and could change again any release.

3. So, a box is open by default. But, as you cannot assume which one, you shall always open one.

Guideline 2. Format helps those who help Format. Do not hesitate to add break hints or open new
boxes. This helps to avoid various symptoms such as: way too long lines or contents spread on many
small lines vertically aligned at the right margin.

Remember: the cost of opening boxes and adding break hints is dwarfed by the cost of outputting
the content.

Guideline 3 (Flushing discipline). It is mandatory to flush the pretty-printing engine at the end of
pretty-print, to print all the material waiting for good rendering in the pretty-printing engine data
structures.

You shall not flush the pretty-printing engine at random, either using "@." (print_newline) or
"@?" (print_flush), because flushing automatically closes all boxes and tags. This breaks the box
splitting discipline.

Guideline 4 (Newline). Formatting indications for newline "@\n ", or flush and newline "@." are
delicate to use.

Adding a newline which is not computed by the pretty-printing engine is risky at best for it breaks
the box splitting discipline.

If you need to split lines, simply open a v-box and output normal break hints: inside a v-box,
each break hint will print a newline as desired, but all open boxes will stay active and the document
rendering will continue normally. As an extra benefit, inside a v-box line splitting occurs without
low-level device flush, thus usually improving efficiency.

Guideline 5 (Use fprintf and %a). Function fprintf gets a Format.formatter first argument.
Via %a conversions, fprintf can compose pretty-printers in a generic and natural way.

Guideline 6 (Abstract the formatter). To make your routines generic and compatible with %a,
promote them to pretty-printers by adding an explicit Format.formatter argument.

8. Document generation with Format

There are mainly two traditions when it comes to pretty-printing. In the functional world, a document-
based approach has garnered much attention. The other tradition comes directly from Oppen’s seminal
article and has lead to the Format module in OCaml. This section discusses those two different
approaches. Spoiler: this has a lot to do with the fundamental lazy/strict differences. We will also
show how one can extend Format to create a document.

Document-based pretty-printing has been championed by Hughes [3] and Wadler [10], promoting
thereby the ability to work at an algebraic level. In this setting, a document can be abstracted as either
a string (Text), a potential line break with indentation (Line), the concatenation of two documents
(Concat), or a group, that is a unit with line breaks interpreted consistently. That is why a group is
translated to a Format hv-box. The document type is defined in Figure 7.

12

Format unraveled

In a lazy setting (call by name/need) values may be suspensions that are not yet been completely
computed, but will be computed as much as desired "on demand". For instance, appending lists can
cost almost nothing since elements of the resulting list will be constructed and consumed as necessary
by the function using the result (call by need features a kind of "pipeline effect for free"!). In a strict
setting (call by value), data must be completely built before usage: in the case of list concatenation,
it means that the entire resulting list is built before its first element is made available.

This could partly explain why building a complete document before printing is in some sense
a conceptual notion in a lazy setting: the parts of the document will be build on demand, while
printing the document. No extraneous data structure is built before printing, the values to be printed
are computed and used to drive the pretty-printing routines. In a strict setting, these values are
completely computed and built anyway, so there is no extra cost in pretty-printing them.

Hence, in a strict setting, building documents could be much more expensive, since the final
document data structure is entirely built before printing starts. Using modern computers, document
construction could be fast enough to be tolerable or amount to a fraction of the total cost of pretty-
printing. Actually, in the blog post announcing Pprint3, an OCaml library providing combinators for
building and printing documents, Pottier similarly notes:

One limitation of the library is that the document must be entirely built in memory before
it is printed. So far, we have used the library in small-to medium-scale applications, and
this has not been a problem. In principle, one could work around this limitation by adding
a new document constructor whose argument is a suspended document computation.

As said before, document building is driven by values. In Format, values drive the pretty-printing
engine without the need of a document. In a way, Format’s pretty-printing engine simply avoids the
construction of documents or uses a virtual construction of the document that it prints before even
building it! Building a document instead of pretty-printing could simply be a debugging option of the
pretty-printing engine: it could be useful to match the semantics of pretty-printers by looking their
pretty-printing meaning, instead of painfully guessing from the pretty-printing engine output.

This suggests to add to the pretty-printing engine a formatter that would build a document instead
of printing its virtual representation. Such an approach is presented in Figure 7. The basic primitives
of Format are redefined to simply emit building elements in a abstract_document stack. In a sense,
this stack is a primitive document at this point. In order to approximate the basic notions of group,
line and text, the stack needs to be post-processed via eval_abstract_doc to generate a value of
type document. eval_doc closes the loop: it pretty-prints a document.

This seat-of-the-pants implementation should be refined in the Format spirit: we need add a specific
type of pretty-printing formatter that would output such a document. True, it sometimes feel like we
are trying to artificially fit a square peg in a round hole. Also, the initial languages are not totally
equivalent in terms of expressiveness. Even Wadler’s and Hughes’s approaches have this problem.
Yet, bridging the gap in the opposite direction, from combinators to Format/Oppen, is not trivial:
the main problem is time efficiency. In their works, Chitil and Swierstra [1, 9] arrive at an optimally
bounded solution. Actually, Chitil’s [1] solution starts from deriving a construction similar to the
abstract_document of Figure 7.

9. Related work

Pretty-printing with combinators has garnered interest notably in the lazy community. There has been
a continuous trend toward, objectively, more efficiency as well as more algebraic considerations, and
also, more subjectively, prettier outputs. However it all began with Oppen [6] and work in LISP [11].

3http://gallium.inria.fr/blog/first-release-of-pprint/

13

http://gallium.inria.fr/blog/first-release-of-pprint/

Bonichon & Weis

type box = Hv of int

type document =
| Text of string
| Concat of document * document
| Group of box * document
| Line of int

type abstract_document =
| AText of string
| AOpenBox of box
| ABreak of int
| ACloseBox

let stack = ref []
let push e = stack := e :: !stack
let print_string s = push (AText s)
let print_break n = push (ABreak n)
let open_box b = push (AOpenBox b)
let open_hvbox n = push (AOpenBox (Hv n))
let close_box () = push ACloseBox

let eval_abstract_doc stack =
let rec loop = function

| [] -> Text ""
| AText s :: l -> Concat (Text s, loop l)
| AOpenBox b :: l ->

let content, next = accu_until_close l in
Concat(Group (b, content), loop next)

| ABreak n :: l -> Concat (Line n, loop l)
| ACloseBox :: _ -> failwith "No open box to close"

and accu_until_close = function
| [] -> failwith "No closing of open box"
| ACloseBox :: l -> Text "", l
| AText s :: l ->

let content, next = accu_until_close l in
Concat (Text s, content), next

| AOpenBox b :: l ->
let content, next = accu_until_close l in
let content', next = accu_until_close next in
Concat(Group (b, content), content'), next

| ABreak n :: l ->
let content, next = accu_until_close l in
Concat(Line n, content), next

in loop (List.rev stack)

let rec eval_doc ppf = function
| Text s -> fprintf ppf "%s" s
| Concat (d1, d2) ->

fprintf ppf "%a%a" eval_doc d1 eval_doc d2
| Group (Hv n, d) ->

fprintf ppf "@[<hv %d>%a@]" n eval_doc d
| Line n -> pp_print_break ppf n 0

Figure 7: Document generation in Format

Leijen has implemented Wadler’s ideas in Haskell4. One drawback of Wadler’s proposal is that its
complexity is non-linear. This together with the fact that earlier proposals were “not pretty enough”,
lead Bernardy5 to offer another Haskell-based library on the same algebraic principles. Chitil [1] offers
a very thorough summary of the existing proposals before giving a more efficient solution.

Swierstra and Chitil [9] seem to have the final word, for now, with their combinator-based functional
pretty-printing algorithm that retains the linear space and time complexities of Oppen’s algorithm.
As Oppen’s, it does not need to have the full document to start printing out text. This joint article
extends both author’s previous works [1, 8]. In particular, Chitil [1] has benchmarks showing the
relative efficiencies of his proposal, Hughes’s and Wadler’s. Some years later, Kiselyov, Peyton-Jones
and Sabry [4] describe a very elegant use of yield to implement an incremental linear pretty-printer.

Such document-based implementations have also been made for OCaml. For example, Pottier,
with Pprint, Tayanovsky6 and Lindig [5] have implemented pretty-printer combinators inspired by
Wadler’s work. Pottier’s module actually implements Leijen’s ideas in the OCaml world.

Out of the functional programming communities, there are various implementations of Oppen’s
algorithm. For example, Giese has implemented Oppen’s algorithm in Java7. Wadler’s algorithm has
implementations in languages like Rust8, or Javascript/Node 9. To the best of our knowledge, there is
no standard library support as in OCaml or no such deep development as in Haskell.

4http://research.microsoft.com/en-us/um/people/daan/download/pprint/pprint.html
5http://www.cse.chalmers.se/~bernardy/prettiest.html
6http://t0yv0.blogspot.com/2012/04/prettier-printer-in-ml.html
7http://jpplib.sourceforge.net/, forked at https://io7m.github.io/jpplib/
8https://github.com/epsilonz/pretty.rs
9https://github.com/folktale/text.pretty-printing

14

http://research.microsoft.com/en-us/um/people/daan/download/pprint/pprint.html
http://www.cse.chalmers.se/~bernardy/prettiest.html
http://t0yv0.blogspot.com/2012/04/prettier-printer-in-ml.html
http://jpplib.sourceforge.net/
https://io7m.github.io/jpplib/
https://github.com/epsilonz/pretty.rs
https://github.com/folktale/text.pretty-printing

Format unraveled

10. Conclusion

We have provided an extended introduction to Format, its basic and more advanced features, but
also replaced it in the more general pretty-printing landscape. Our hope is that it increases the
understanding and the use of this module of the OCaml standard library.

Techniques based on Oppen’s algorithm do have some limitations since the initial goal was to
strike a balance between expressiveness and efficiency. For example, it is impossible for the offset of
Oppen boxes to depend on what is going to be printed in the future. Format module exhibits the
very same limitations. Document-based pretty-printing can have that feature. Indeed, it might have
access to the whole document before deciding what to do since the document must be built. In this
case, constructing the whole document might render the output prettier.

By and large, we are convinced that Format is already a good solution to the problems of pretty-
printing data for the working programmer. Yet, it can be improved in a number of ways. We are
considering adding fully abstract printing (document production without I/O side effects), printing
of polymorphic data structures (not to be confused with now available polymorphic printing of
monomorphic values) and tables (column-formatted outputs).

We are currently experimenting with these subjects. We would like to make these extensions work
for all modules using format strings (Printf, Scanf). We are hopeful that it will provide new and
interesting ways to handle formatted data in OCaml.

References

[1] O. Chitil. Pretty printing with lazy dequeues. ACM Trans. Program. Lang. Syst., 27(1):163–184,
2005.

[2] C. Dominik. The Org-Mode 8 Reference Manual: Organize Your Life with GNU Emacs, 2014.

[3] J. Hughes. The design of a pretty-printing library. In J. Jeuring and E. Meijer, editors, Advanced
Functional Programming, First International Spring School on Advanced Functional Programming
Techniques, Båstad, Sweden, May 24-30, 1995, Tutorial Text, volume 925 of LNCS, pages 53–96.
Springer, 1995.

[4] O. Kiselyov, S. L. P. Jones, and A. Sabry. Lazy v. yield: Incremental, linear pretty-printing. In
R. Jhala and A. Igarashi, editors, Programming Languages and Systems - 10th Asian Symposium,
APLAS 2012, Kyoto, Japan, December 11-13, 2012. Proceedings, volume 7705 of LNCS, pages
190–206. Springer, 2012.

[5] C. Lindig. Strictly pretty, 2000.

[6] D. C. Oppen. Prettyprinting. ACM Trans. Program. Lang. Syst., 2(4):465–483, 1980.

[7] R. M. Pirsig. Zen and the Art of Motorcycle Maintenance. William Morrow & Company, 1974.

[8] S. D. Swierstra. Linear, online, functional pretty printing (corrected and extended version).
Technical Report UU-CS-2004-025a, Institute of Information and Computing Sciences, Utrecht
University, 2004.

[9] S. D. Swierstra and O. Chitil. Linear, bounded, functional pretty-printing. J. Funct. Program.,
19(1):1–16, 2009.

[10] P. Wadler. A prettier printer. J. Funct. Program., pages 223–244, 1998.

[11] R. C. Waters. User Format Control in a LISP Prettyprinter. ACM Trans. Program. Lang. Syst.,
5(4):513–531, 1983.

15

	Introduction
	A brief history of [escapeinside=##]ocamlFormat: a quest for abstraction
	[escapeinside=##]ocamlFormat basics
	Break hints
	Boxes
	Remarks
	Pretty-printing versus text processing
	Oppen's algorithm

	Format strings
	Syntax of format strings
	Typechecking format strings
	Typing primitive functions on format strings

	Polymorphic printing
	Semantic tags
	Guidelines for using [escapeinside=##]ocamlFormat
	Document generation with [escapeinside=##]ocamlFormat
	Related work
	Conclusion

