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Abstract. This article describes an efficient persistent mergeable data structure for mapping
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Résumé

Cet article explore le probleme de la représentation de tables
d’association persistantes indexées par des intervalles. Nous cherchons
une structure de données qui permettent de trouver la valeur liée a un
intervalle lorsque celui-ci a été inséré en tant que clé. Nous y ajoutons
la contrainte additionnelle que cette représentation doit rester efficace
dans cette recherche de valeur, méme I’intervalle spécifique n’est pas
une clé de la table d’association. Dans ce cas, on doit retourner toutes
les valeurs associées a des intervalles intersectant I’intervalle demandé.

Un des exemples concrets d’application d’une telle structure de don-
nées concerne la modélisation des données d’un programme C durant
son analyse par interprétation abstraite.

Dans ce cas, on ne peut se contenter de modéliser la mémoire comme
un tableau de unsigned char dans le cas de valeur abstraites afin de
pas perdre trop en précision. Soit un mot de 32 bits dont la valeur ab-
straite est {1,258}. Les valeurs abstraites au niveau octet qui lui cor-
respondent sont {1,2} pour I’octet de moindre poids, {0, 1} pour son
voisin et {0} pour les deux derniers. Si on essaie de relire un mot a par-
tir de cet endroit, les valeurs possibles sont maintenant {1, 2,257, 258 }!
On ne peut donc stocker les octets des données indépendamment de leur
relation dans le programme.

La structure de données doit rester générique et utiliser des fonc-
tions de I’ utilisateur pour recomposer les valeurs de fagon adéquate. En
particulier, tout boutisme (ou endianness) architectural, gros, petit ou
inconnu, doit pouvoir étre traité correctement.

Enfin, I’analyse doit pouvoir fusionner plusieurs branches dans
lesquelles le méme tableau de unsigned char a été modifié différem-
ment. Afin de rester efficace, la structure de données doit étre fu-
sionnable au sens d’Okasaki et Gill [12], c’est-a-dire que les sous-
structures doivent pouvoir étre inspectées en utilisant une approche “di-
viser pour régner”. Les résultats doivent pouvoir étre mis en cache pour
étre utiliser plus tard sur des instances similaires de la structure de don-
nées. Notons également que la structure de données recherchée doit
pouvoir supporter un partage maximal pour augmenter son efficacité.



A la recherche de la bonne structure de données

La solution que nous proposons dans cet article vient apres avoir es-
sayé et écarté d’autres représentations. Une des principales difficultés
vient du fait qu’associer une valeur a un intervalle donné n’est pas la
méme chose que d’associer cette valeur a tous les éléments de cet in-
tervalle. Il n’est donc pas possible d’utiliser une structure similaire aux
diets [5].

La premiere idée qu’on peut avoir est d’utiliser des arbres AVL [1],
comme ceux présents dans le module Map d’OCaml. Mais cette struc-
ture de données n’est pas fusionnable et les rééquilibrages interferent
avec le partage maximal des données.

Les arbres Patricia [11] sont une solution élégante pour associer des
valeurs a des entiers, lorsque la fusionnabilité est importante. A par-
tir du moment ot les clés peuvent étre ordonnés suivant un ordre lexi-
cographique, on peut construire un arbre Patricia.

On peut vouloir utiliser des arbres Patricia indexés par des inter-
valles. En représentant la table d’association comme un arbre Patri-
cia gros-boutiste, on peut espérer que cela fonctionne, 1’id de chaque
intervalle étant par exemple sa borne inférieure. Mais les exemples
pathologiques Fig. 1 et Fig. 2 montrent que lorsqu’on fusionne ces deux
arbres, on ne peut “diviser pour régner”’. Le calcul de la fusion ne peut
étre mémoisé et cette représentation ne correspond donc pas au critere
de fusionnabilité recherché.

Si on essaie maintenant d’indexer les arbres Patricia par des entiers,
on obtient une alternative intéressante a la solution que nous proposons.
En omettant les noeuds dont les fils pointent au final vers la méme
feuille, on obtient une structure approchant des diagrammes de déci-
sion binaire [2] travaillant sur les bits des clés. Les feuilles de cet arbre
seraient liées a un préfixe de clé au lieu de la clé entiere elle-méme. Un
écueil de cette approche est qu’elle ne fonctionne bien que lorsque la
représentation binaire des entiers de I’intervalle-clé est caractérisée par
un nombre faible de préfixes communs. L’intervalle {0..47} correspond
a deux liens (pour {0..32} et {33..47}) mais {0..62} en a six!



Notre solution

Les tables d’association que nous proposons, baptisées rangemaps
associent des valeurs aux intervalles avec une fusionnabilité similaire
aux arbres Patricia indexés par des entiers. Les associations y sont en-
registrées sur les nceuds, contrairement aux arbres Patricia et comme
dans les diets. D’ailleurs si les valeurs stockées sont des booléens, cette
structure devient assez comparable aux diets, avec la propriété addition-
nelle d’étre fusionnable.

Dans les rangemaps, les nceuds sont ordonnés statiquement comme
dans les arbres Patricia. Celui dont I’intervalle contient un multiple
d’une plus grande puissance de deux sera placé au-dessus de 1’autre.
Cet ordre permet également d’avoir un certain équilibrage automatique
de I’arbre. On peut voir un arbre ordonné de cette facon en Fig. 4.

La fusionnabilité des rangemaps est supérieure a celle des arbres Pa-
tricia indexés par des intervalles. En fait, méme si les premiers parais-
sent souffrir du méme probleme que ces derniers, chercher les associ-
ations adjacentes est limité aux nceuds parents immédiats. Ceci est en
fait une conséquence 1’ordre statique utilisé.

Orthogonalement, et dans le cadre de la recherche de partage maxi-
mal au sein d’un méme arbre, les sous-arbres des rangemaps sont tous
relatifs. Les fleches de I’arbre portent sur elles les décalages du fils par
rapport au pere (cf Fig. 5).

Afin d’optimiser la compacité de la représentation, les intervalles
adjacents sont automatiquement recousus en un seul lorsque les valeurs
auxquelles ils sont liées sont identiques. Cette optimisation est une idée
empruntée aux diets d’Erwig [5] et étendue aux valeurs plus complexes
que portent les rangemaps.

Ces optimisations se traduisent lors de 1I’implantation par des fonc-
tions intelligentes de construction et d’insertion d’éléments qui re-
spectent les invariants d’ordre et de compacité dont nous avons parlé.
En particulier on peut voir comment fonctionne une insertion provo-
quant un recousement Fig. 6 et Fig. 7. Comme ces fonctions intelli-
gentes, la recherche des valeurs liées a un intervalle, dont nous avons
parlé en introduction au probleme, est implantée en utilisant les zip-



pers de Huet [9]. Ces zippers sont également utiliés lorsqu’on a besoin
de naviguer a I'intérieur des rangemaps ou lorsqu’ils ont besoin d’&tre
recousus.

Cette structure de données est actuellement mise a I’épreuve des tests
de Frama-C dans le but final d’améliorer la précision et 1’efficacité
(en mémoire et vitesse) de I’analyse de valeur. Parce que cette re-
implémentation est aussi I’occasion de rationaliser certains des algo-
rithmes utilisés, les résultats préliminaires montrent un gain intéressant
de précision. Par contre, la structure précédemment utilisée ayant accu-
mulé une quantité de fonctionalités conséquente qui doivent toutes étre
reproduites avant de pouvoir la débrancher, il n’est pas encore possible
a I’heure actuelle d’effectuer de comparaisons de performances avec la
nouvelle représentation.



1. Introduction

The problem at hand

The problem we are concerned with in this article is the representa-
tion of persistent maps indexed by intervals. The solution we are look-
ing for is a data structure that allows to retrieve the value associated to
an interval when this interval has previously been used as the key in an
insertion; an additional constraint is that the representation must also
be efficient for finding what an interval is mapped to when this spe-
cific interval is not employed as a key in the map. In this case, the data
structure must allow to retrieve all bindings that intersect the required
interval, and let these partial results be combined to the programmer’s
liking.

As a concrete example, consider the modelization of the contents of
an unsigned char array during the abstract execution of a C program.
We are concerned with the analysis of embedded C code, for which tar-
get endianness and word size are known, portability is not a concern,
and the code often has no choice but to contain low-level constructs
(e.g. [10]). Type-punning is used in this introductory example. Some
compilers assert the right to mistranslate such C code. Embedded com-
pilers do not: compiling this kind of code is precisely what they are
used for. The same example could have been written using unions. The
result would then still be undefined, but most compilers offer guarantees
in addition to the base undefinedness of the C99 standard in this case.

The C program may take the address of any cell in this array and cast
this address to an int*. If the run-time architecture allows it, the pro-
gram may then use this pointer to write an int (on a 32-bit architecture,
the int occupies four consecutive cells in the original char array). If
the same pointer (as cast to int*) is now dereferenced, it is desirable
to recover exactly the same abstract value that was previously written
there. If an unsigned char* pointer referencing one of the four afore-
mentioned cells is dereferenced, the result should be that the value read
is a part of the stored int. And lastly, if an 8-byte double is read from
the same location, the data structure should be able to indicate that the
bits read are made partly from the int, and partly from other values,
each of which may for instance have been written as a char previously.



In a concrete (say, hardware) implementation, the memory can be
considered as an unadorned byte array. A multi-byte memory access
reads — or writes — several consecutive bytes, and that’s all there is to it.
In this case, there is no need to consider the memory as a map whose
keys are intervals. But in the case of abstract values, an unfortunate loss
of precision would occur if the same approach was employed. Consider
as an example of abstract value for a 32-bit word the pair {1, 258}. Pro-
jecting this word-level abstract value in abstract values for the compo-
nent bytes, we obtain the set {1, 2} for the least significant byte, {0, 1}
for its neighbor, and {0} for the two most significant bytes. Now try-
ing to read back a word from the same location in memory, it appears
that the possible values for the data word are {1, 2,257,258}, an un-
acceptable approximation. Obviously, the component bytes of a data
word can not be stored independently without concern for the implicit
relationship between them.

For maximum generality, the data structure should not try to decide
how to read a single unsigned char from a stored int, or how to
recompose a double from several smaller values. Instead, it should
be generic and call user-provided functions to recompose values when
appropriate. Specifically, the structure should be generic enough that,
by providing the right functions, little, big, and unknown endiannesses
can all be accommodated.

Finally, C being an imperative programming language, the analy-
sis may involve merging together several execution branches where the
same unsigned char array has been modified in different ways. For
good performance, the data structure should be mergeable, in the exact
same sense as in Okasaki and Gill’s [12]. We informally define merge-
ability as the following property:

Property 1 (Mergeability). When iterating in parallel on two instances
of the data structure, a divide-and-conquer approach allows to con-
sider separately the component substructures. Additionally, the results
obtained for these substructures can be cached, and have a good chance
to be useful later, when processing other instances that are only slightly
different from the initial ones.



The mergeability property is named in reference to the merge oper-
ation that takes two trees ¢; and t,, and builds a tree where each key
contains the merge of the values associated to this key in ¢; and ¢,. The
merge function can quickly check the subtrees that appear at the same
level in ¢; and ¢ for physical identity. If these subtrees are physically
equal, the computation of their merge is immediate (the result subtree
is in this case identical to the arguments). This can happen for instance
when t, was created by slightly modifying ¢, or, if hash-consing [3, 4]
is used to ensure maximal sharing, at every opportunity.

Contents of the article

This article shows the development of an efficient solution to the
problem we have exposed. A starting point for the reflection is the
Patricia tree structure, summarized in Sect. 2. We show in Sect. 3 how
we considered various other solutions based upon AVL trees (Sect. 3.1)
and Patricia trees (Sect. 3.2 and Sect. 3.3). This eventually leads us to
describe the data structure answering our needs in Sect. 4. We have a
prototype implementation of rangemaps, from which we have extracted
relevant technical details in Sect. 5. Considerations about the future of
this work conclude this article in Sect. 6.

Note that most of the article is language agnostic but code samples
are in OCaml.

2. Reminder: Patricia trees

Morrison’s Patricia trees [11] provide a great technical solution for
mapping integers to values, when mergeability is important. In fact,
Patricia trees are rather unique in this respect, and they will serve as a
natural guide in our reflection.

Patricia trees are used to implement maps when there exists a natural
lexicographical order on the keys. When used with integers as keys, the
lexicographical order used is the comparison of the keys’ binary rep-
resentations. Okasaki and Gill[12] offer both “little-endian” and “big-
endian” versions — these terms characterizing here the order in which
bits in a key are scanned, either from most significant to less significant
or the other way round. If the “big-endian” representation is chosen, and



assuming we have to deal only with positive integers (both assumptions
we will make in the remainder of this article), the lexicographical order
on binary representations coincides with the usual order of integers.

During the lookup of a key k in a Patricia tree, each node, starting
from the root, tests one bit in the binary representation of % in the lex-
icographical order. When, for a given prefix, all keys present in the
tree have the same value for the next bit, the comparison of this bit is
skipped, so that in general, it takes about log,(n) comparisons to get
the value associated to a key in a map of n bindings. There never is
any rebalancing in Patricia trees: the nodes of the tree are hierarchized
according to the lexicographical order that has been fixed in advance.
Patricia trees can therefore be unbalanced (a worst-case example is a
map where the keys are 1, 2, 4, 8, 16...This map is represented as a
comb). However, the height of a Patricia tree is bounded by the base-2
logarithm of the difference between the values of its smallest and largest
key. If arbitrary 32-bit integers are used as keys, a Patricia tree can never
have an height higher than 32 (and a lookup never require more than 32
comparisons).

When maps indexed by a type key different from int are required, it
is still sometimes possible to employ Patricia trees. It may be a simple
matter of tagging each object of type key at creation with a unique
integer (e.g. an id field in a record type). This makes it possible to
use Patricia trees for representing maps from keys to values, by using
the id field as the actual key during lookups.

However, these maps may be expected to provide primi-
tives that give access to the original keys, e.g. a function
mapi: (key -> ’a -> ’b) -> ’a t -> ’b t. These primitive can
be made possible by storing actual keys (of type key) at the leaves of
the tree, in place of the integer keys stored in traditional Patricia trees
implementation, knowing that when the integer is needed, it can be ob-
tained from the key.



3. Towards mergeable binary trees indexed by intervals

Consider now the problem of mapping non-overlapping intervals of
integers to values. A concrete use case for this structure was provided
in Sect. 1. The same property of mergeability that Patricia trees have is
expected of this data structure.

Another use case is to implement sets of integers as maps from in-
tegers to booleans, with the same property that diets [S] have, of repre-
senting consecutive sequence of present (resp. absent) integers as a sin-
gle binding. Diets do not have the mergeability property; if the reader is
familiar with this data structure, he may prefer to think of the problem
as that of representing mergable diets.

A data structure indexed by intervals

For the “abstract interpretation of low-level C code” example, map-
ping an interval to a value is not the same thing as mapping all integers
in the interval to this value. For the “mergeable diets” example, the
distinction is not necessary.

For maximum generality, the data structure should not make assump-
tions about what happens when a new binding added to a map overlaps
with some of the bindings already in place. Behaviors that may be use-
ful are to remove the overwritten binding completely, or to alter the con-
tents of the untouched parts of the original binding to reflect the fact that
they were part of a larger binding that was partially overwritten. Provid-
ing these behaviors implies for instance that the binding 0..31 — {22}
is not the same thing as 32 individual bindings 0 — {22}, 1 — {22}...

The solution data structure should, for instance, be able to answer
queries such as finding all bindings that intersect a given interval. Being
able to do this is necessary for lookups, but also at the time of adding a
new binding, in order to maintain the invariant that the intervals in the
map are disjoint.

While it is possible to associate a unique integer to use as an id to
any interval, this solution, applied naively, would store the intervals in
the map without respect for their natural order, and as a consequence,
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the whole tree would have to be explored in order to find the bindings
that intersect a given interval.

3.1. Using AVL trees with the natural interval order

Note that the intervals used as keys in a given map are guaranteed
to be disjoint. The first idea is therefore to order them according to
their natural order, which happens to be total among the keys of a single
tree. Many data structures have been proposed for representing maps
indexed by totally ordered keys as trees. In most of them, the tree struc-
ture can be taken advantage of to quickly look up a range of bindings.
As an example, the Map module in the OCaml standard library (imple-
mented with AVL trees [1]) can easily be augmented with functions for
looking up all bindings that intersect the query interval. The resulting
data structure, unfortunately, is no more mergeable than Map usually is.
Balancing operations interfere with sharing.

3.2. Trying to use Patricia trees indexed by intervals

Since, for us, mergeability is an important criterion, and since Pa-
tricia trees have a reputation for being mergeable, it is natural to try to
representing the map as a big-endian Patricia tree, using for instance
the lower bound of each interval as its id. It may be possible to make
this representation work, but mergeability again suffers unexpectedly.
Consider indeed the example on Fig. 1.

In Fig. 1, the binding 0..47 — {11} is stored in the leftmost binding,
but it contains information that may interfere with a differently located
binding in another tree.

When computing the merge of the two trees from Fig. 1 and Fig. 2,
the divide-and-conquer approach does not work! The 0..47 binding in
the left-hand-side subtree of Fig. 1 contains information that is relevant
for computing other branches of the result. Therefore, the computation
of the merge of such affected subtrees cannot be cached, since it de-
pends on external factors. This choice of representation is simply not
mergeable in the sense of Okasaki and Gill [12].
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64..100 — {13}
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0.47 — {11}  48..63 — {12}

Figure 1 — Interval map as a Patricia tree, using the minimum bound as
id
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0..31 — {13} .
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32.47 — {14} 48..100 — {15}

Figure 2 — Another interval map represented as a Patricia tree
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3.3. Trying to use Patricia trees indexed by integers

Let us now proceed to show an alternative representation not quite
like the one we are proposing, which could nevertheless be a reasonable
alternative to it. Patricia trees can be made to omit the nodes whose chil-
dren both eventually lead to the same leaf anyway (making them even
closer than they already are to Binary Decision Diagrams [2] working
on the bits of the key). We have not encountered this optimization in
the literature, perhaps because it requires comparing the values that are
bound to the keys, which may be expensive outside the context of hash-
consing. This optimization can be done by changing the Leaf construc-
tor to contain a prefix instead of a key (meaning that in this tree, all keys
with this prefix are bound to the same value). Then, it is only a matter
of systematically replacing applications of the Node constructor by a
“smart constructor” function which checks whether the left and right
subtrees are both Leaf with the same value, and replaces the Node and
its two children with Leaf in this case.

With this optimization enabled, Patricia trees can efficiently repre-
sent identical bindings to long consecutive sequences of keys. It be-
comes feasible to represent the 0..47 — {12} binding as a binding from
each of the integers 0, 1,..., 47 to any single value. This single value
should of course contain the bound value {12}, but also the interval that
serves as key of this binding, so that an access inside the interval (say,
to the value bound to the interval 8..15) is allowed to recover the infor-
mation that this binding is part of a sequence that goes from 0 to 47. In
particular, adding a new binding to the interval 8..15 in this tree should
either transform the existing 0..47 — ... binding into three bindings
0..7, 8..15, 16..47 or into a single 8..15 binding depending on the de-
sired semantics for overlapping writes. In both cases, it is necessary to
have the information that the current binding at 8..15 is really a sub-part
of a binding to a larger interval, so that this binding can be completely
modified or removed. It would be necessary to make use of zippers[9] in
order to navigate efficiently from the bindings at 8..15 to the adjoining
40 bindings that used to be related to them.

As a foreseen drawback with this approach, note that the factoring
of identical bindings suggested here only works well when the binary
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representations of the integers contained in the key interval are charac-
terized by a few common prefixes. A key such as 0..47 would require
two actual bindings in the tree to be represented (for 0..32 and 33..47).
A worst-case interval such as 0..62 woud require 6 actual bindings to
represent (for 0..31, 33..47, 48..55, 56..59, 60..61 and 62..62).

4. The solution we propose

We propose to build maps from intervals to values, with the same
mergeable quality that Patricia trees display for integer-indexed maps.
As a first difference from Patricia trees, but similarly to diets [5], in
our proposal bindings are recorded on the nodes, whereas Patricia trees
record bindings at the leaves. Diets are a data structure to represent
sets, when a total order, and successor and predecessor functions are
available for the elements — for instance, integers. Diets are efficient
when long sequences of consecutive elements commonly occur. On the
other hand, our proposal is a data structure for maps indexed by intervals
of integers, but using this structure to map intervals to a boolean gives
an implementation for sets of integers which it is instructive to compare
to diets.

4.1. Basic idea

Let us assume for simplicity that we are only interested in repre-
senting interval-indexed maps in which the keys, in addition to be-
ing non-overlapping, are contiguous and always cover the same defi-
nition interval. We will always use the interval 0..100 in the examples.
For consistency with this invariant, a new map will contain a single
binding from the key 0..100 to a value provided at construction time:
val new_map : ’a -> ’a tree.

Such a map is represented in our data structure by a single node with
empty subtrees (see Fig. 3). From this point onwards, for the sake of
readability, when both subtrees of a node are empty, we omit them from
the figure.

A function add allows to change part of an existing map:

val add : int*int — ’a — ’a tree — ’a tree

14



0..100 — {11}

7N

Empty Empty

Figure 3 — Tree for the map 0..100 — {11}

Let us consider what happens when calling add (20,30) {12}
on the initial tree created above. The resulting map has bindings
0.19 — {11}, 20..30 — {12}, and 31..100 — {11}. In fact, we
must not confuse the bindings at 0..19 and 31..100 for bindings con-
taining the value {11}: they are both remaining parts of a binding that
originally spanned the interval 0..100 and has been partially overwrit-
ten. In order to make this distinction explicit, we denote the map as
0..19 — {11}0“100, 20..30 — {12}, and 31..100 — {11}0“100

It is obvious how to arrange these bindings in a tree for easy retrieval:
with the lower bindings on the left-hand-side and the higher bindings on
the right-hand-side. What is not obvious is deciding which node goes
on top so that the tree ends up balanced or nearly balanced.

One possibility is to record the height of the trees and to build trees
that are balanced by construction. This amounts to using AVL trees [1]
with the natural order on intervals, which we proposed as an ad-hoc
solution in Sect. 3.1. Unfortunately, the re-balancing operations cause
the creation of physically different trees that contain the same sets of
bindings, that is, loss of mergeability.

Another possibility, which preserves mergeability, relies on the same
idea that underlies Patricia trees. In Patricia trees, there is a static hi-
erarchy for deciding which node goes above the other, and this static
hierarchy ensures trees are balanced or almost balanced without any
re-balancing operations. In the case of our data structure, we similarly
define a static ordering on intervals that tells which node must be placed
above the others. Intuitively, the interval containing the multiple of the
largest power of two is put at the top. Like the ordering in Patricia trees,
this ordering has the bounded chain length property (the bound is the
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2-logarithm of the definition interval’s width, give or take a couple of
units).

This ordering uses a notion of rank for the intervals used as keys. Of
two intervals for which we must decide which should be the parent of
the other of the other, the one to go on top is the one with the highest
rank. Let us now define this notion of rank more formally.

Definition 1 (Rank of an interval). The rank of an interval [ is defined
as:

rank(I) = (k| 3z € I x mod 2" = 0 A
(Vy € IVK ymod 2 =0 = k' <k))

In particular, it follows from Def. 1 that any interval containing 0 has
any rank, because Yk, 0 mod 2 = 0. We take as convention that the
interval containing 0 will always have the highest rank of all intervals
contained in a tree (this special value will be denoted as oc). From
the definition of a rank, we can now define a strict partial order on our
intervals.

Definition 2 (Strict partial order over intervals, >;). Let I, and I be
intervals.
I =, Iy <= rank(l;) > rank(1ls)

This strict partial order has the additional property that two contigu-
ous intervals are always comparable.

Lemma 1 (Comparability of adjacent intervals). Let I, and 15 be (non-
equal) adjacent intervals. Either Iy =; I or I >=; 1.

P}’OOf: Let Il = al..bl and [2 = ag..bz with Ay = bl + 1.
Now assume rank(l) = rank(ly), i.e. Iny, na, k, n12% € I Any2k €
I> with ny < nas.

We know that dn n; < 2n < n; + 1 < ny (one of two consecutive
integers is even). Hence 3n, n,2F < 2n2%F = n2*+1 < ny2*. Either I
or I, contains the value n2F*! as they are contiguous, therefore either
rank(1ly) or rank(Iy) is k + 1, contradicting our first assumption. [
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Fig. 4 shows the tree representation ordered with the rank func-
tion for the following bindings: 0..19 — {11}g.100, 20..30 —
{].2}, 31..100 — {].1}0“100.

0..19 — {11}0._100

SN

Empty  31..100 — {11}0.100

7N

20..30 — {12} Empty

Figure 4 — Ordering nodes according to rank

In Fig. 4, the interval 0..19 is at the root because it contains 0. The
interval containing 0 is always at the root by convention. The interval
31..100 contains 64 = 25 whereas the interval 20..30 contains 24 =
3 * 23, therefore the former goes above the latter. The 20..30 binding
ends up as left child of the 31..100 binding.

4.2. Pretty well mergeable

In Sect. 3.2, we claimed that Patricia trees in which lower bounds of
intervals were used as ids did not fit the mergeability constraint because
during a recursive descent on two separate trees, corresponding subtrees
would have different definition domains. When trying to merge the trees
in Fig. 1 and Fig. 2, for instance, one encounters the problem that the
corresponding leftmost subtrees contains the bindings for 0..47 in one
tree and 0..31 in the other. To merge these subtrees, in practice, it is
necessary to borrow the contents of the 32..47 range from the context
of the second tree.

The attentive reader may have noticed that the solution we are
proposing appears to suffer from a similar problem. During a recursive
descent of separate rangemaps (for instance in the context of a merge
operation), the definition domains for encountered subtrees may differ

17



too. This is in fact unavoidable, as the partitioning of the definition do-
main into intervals may not match at all between the two trees. Also
with rangemaps, it may be necessary to patch the narrower subtree to
extend its definition domain to the same size as the other, in effect bor-
rowing bindings from its context.

The important difference is that in rangemaps, with the interval or-
dering that we defined, the “context” in which it is necessary to look
for bindings to borrow is limited. Specifically, only the most immediate
ancestor node from which we descended to the right, or the most imme-
diate ancestor from which we descended to the left, to the exclusion of
any other, need to be borrowed from. Both on the left-hand-side and on
the right-hand-side, there is at most one binding to move temporarily
to the narrowest subtree to equalize it. Because of the way the static
interval ordering works, it is never necessary to look further than this
parent.

To illustrate this claim, consider the example of two corresponding
rank 5 subtrees ¢; and ¢, (let us assume each subtree’s root binding
contains 32). The subtree that reaches the farthest to the right, ¢, can
not span past 63. On the other hand, ¢,’s parent is the binding that
contains 64, and therefore, it is not necessary to look elsewhere than in
this parent node to get a piece of binding that equalizes the definition
domain of ¢, with that of ¢;.

By contrast, in the solution from Sect. 3.2, an arbitrary number of
bindings may have to be borrowed to equalize the definition domains.

4.3. Relative subtrees

An orthogonal optimization, mentioned here for completeness, is to
make all subtrees relative. The arrows between the nodes carry off-
sets that must be tracked when traversing the tree. The benefit ob-
tained in exchange for this additional complexity is that sharing (see
also Sect. 5.6) becomes possible within a single, repetitive map, in ad-
dition to the sharing between distinct but similar maps that other tree
representations usually allow. Note that this optimization is not specific
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to rangemaps and can be adapted to most kinds of trees with numerical
keys.

0..19 — {11}0“100

/N

Empty 0..69 — {11}0.100

IZAN

0..10 — {12} Empty
Figure 5 — The same map as in Fig. 4, represented with relative subtrees

4.4. Automatic stitching of identical adjacent bindings

Yet a different, complementary optimization for compact represen-
tation of repetitive trees is to automatically stitch adjacent bindings to
the same value into a single, wider binding. This is in the spirit of what
Erwig proposed for diets [5]. However, because our data structure is a
map indexed by intervals, requirements for stitching are more sophisti-
cated. Values must be identical, but also be stored with the same width,
and the right-hand side value must start exactly where the left-hand side
one ends.

To make this optimization easily applicable, we store the information
about the original span of the binding (that we denoted as a subscript
{11}¢.100 in previous examples) in the form of a binding width (for this
example, 101) and an offset (for this example, 0).

An example of binding that can be stitched to this one is 101..201 —
{11}. Tt starts where the 0..100 binding finishes, and it contains the
same value (with the same width). With the (width, offset) representa-
tion, the criterion for recognizing that two bindings are stitchable is that
values, widths, and offsets are identical for both, and that in addition,
the stitching point (here 101) is congruent to offset modulo width (that
is, the point of stitching is actually a point where a value ends and a new

19



one can start). Stitching occurs in particular when adding a new node to
an already existing rangemap: this is illustrated in Fig. 7.

In the use case of abstract interpretation of C programes, it is clear
why it is undesirable to omit the last condition above: on a little-endian
architecture, a binding 0..0 — {1,258}, 3 may be the abstract result of
taking the first byte of the concrete 32-bit value 1. The binding 1..3 —
{1,258}(.3 may be the abstract result of taking the last three bytes of
the concrete 32-bit value 258. Stitching these two bindings together
into a single binding 0..3 — {1,258} would be incorrect: the value
contained in these four bytes in a concrete execution, 257, would not be
represented by the abstract value {1, 258} resulting from the stitching.

On the other hand, when the stitching occurs at a point where a bind-
ing ends and another starts, no incorrectness results from stitching them
together. Indeed, these bindings are still considered as different bind-
ings after the stitching has occurred.

In effect, the optimization proposed in this section consists in enforc-
ing the invariant that “no two adjacent stitchable bindings coexist in the
rangemap”’. Therefore, whenever a binding is added, or changed, in a
rangemap, the adjoining bindings must be checked for stitching possi-
bilities.

5. Implementation notes

We have implemented proof-of-concept rangemaps, and we hope to
soon be able to substitute with this implementation the existing, ad-hoc
interval-indexed maps in the value analysis of Frama-C [6]. This section
describes the OCaml implementation. Most functions in the implemen-
tation of rangemaps follow a divide-and-conquer pattern. Therefore,
they can be cached, in the hope that partial results from previous sim-
ilar computations can be reused. In the context of Frama-C’s value
analysis, rangemaps can be expected to exhibit sharing both because of
the existence of maps that are slight variations of each other, and be-
cause of repetitive bindings within a single map. Caching allows to take
advantage of spatial sharing to gain in execution time.
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5.1. Datatype

Rangemaps are trees built from the following algebraic datatype:

type t =
| Empty
| Node of Int.t *
(* max: min is always implicitly zero x)

Int.t * t =*

(x offset_left * subtree_left x)
Int.t *x t =*

(+ offset_right % subtree_right =)
Int.t * Int.t *x V.t

(x offset * modulo x value x)

Tree nodes carry the following information:

— the length of the interval (max+1);

— where (offset_left, offset_right) and what (subtree_left,

subtree_right) its left and right children are. These offsets are com-
puted as the difference between the lower bound of the child and that of

the parent;

—the data bound to the interval, i.e a value repeated each modulo

starting from offset.

5.2. Zippers and tree browsing

The implementation of rangemaps needs to allow for easy browsing
through the nodes of the tree. Huet’s zippers [9] are used in the im-
plementation precisely to efficiently go from one node to its neighbors.

They are also used during the construction of values in Sect. 5.3.

(xx Zippers: Offset of a node =
Node *
continuation of the zipper )
type zipper =
| End
| Right of Int.t * t * zipper
| Left of Int.t *x t * zipper;;

exception End_reached;;

The End_reached exception is used to signal we have reached the end

of a zipper during a rezipping phase.
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Actually, we only need to be able to go from one interval to the next
adjacent one in increasing order. This function, called move_right, is
central to many operations on the tree.

There are only two cases:

— either there is a node below on the right-hand child of the current
node and we only have to grab the leftmost child of this child (which
contains the next adjacent node);

—or there is none and this means the next adjacent node is above
the current node; we therefore need to go back using the history of
navigation contained in the zipper until we see a left turn, which means
we were previously looking for a lesser node than the one where we
turned left; in such a case, the node where the zipper indicates a left
turn is the right one.

The implementation in OCaml is straightforward and goes as fol-
lows:

(** Move to the right of the current node
Uses a zipper for that
*)
let rec move_right curr_off node zipper =
match node with
| Node (_, _, _, offr, ((Node _ ) as subr), _, _, _) —
let new_offset = add curr_off offr in
(+ if there is a right child
the next adjacent one
is the leftmost child of this right child =x)
leftmost_child
new_offset
(Right (curr_off, node, zipper))
subr
| Node (_, _, _, _, Empty, _, _, ) —
(* otherwise we should go up until
we see we have taken a left turn
whenever that happens we have found
the next adjacent node
*)
begin
let rec unzip_until_left zipper =
match zipper with
| End — raise End_reached
| Right (_, _, z) — unzip_until_left z
| Left (offset, tree, z) — offset, tree, z
in unzip_until_left zipper
end
| Empty — assert false

3
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The arguments needed by move_right are the current offset of the
considered node and a zipper which corresponds to the path taken up
to this node. The function returns a tree with its offset, as well as the
corresponding zipper to get there.

5.3. Construction of values

Construction of values of the type t is done exclusively using so-
called “smart constructors”. This enforces various invariants including
that of Sect. 4.4. Only the module implementing the rangemaps has
direct access to the algebraic constructors (t is abstract but could as
well have been declared private).

The stitching phase of Sect. 4.4 makes use of the zippers of Sect. 5.2
: they represent the context in which the subtrees of the node to be
stitched should be re-attached (see also Fig. 7).

We will concentrate here on the add_binding function of the mod-
ule, which internally calls a smart make_node. Their signatures, as
implemented, are:

val add_binding :
int64 — int64 — int64 — Int.t — Int.t —
V.t >t — int64 * t
(x [current_tree_offset] —
[min] — [max] — [off] — [modu] — [value] —
[tree] — [new_current_tree_offset] % [current_tree |

*)

val make_node :
int64 — Int.t — Int.t -t — Int.t - t —
Int.t - Int.t - V.t — int64 * t
current_tree_offset] — [max] —
offset_left_subtree] — [left_subtree] —

(x [
[
[offset_right_subtree] — [right_subtree] —
[
[

off] - [modu] — [value] —
current_new_tree_offset] * [new_tree]

*)

Let us illustrate how the smart add_binding operates on the
rangemap shown in Fig. 6, which represents the following sequential
intervals: 0..19 — {11}, 20..30 — {12}, 31..65 — {11}, 66..80 —
{14}, 81..88 — {15}, 89..100 — {13} with respective ranks oo (by
convention), 3 (24 = 3 % 23), 6 (64 = 25), 5 (80 = 5 21), 3 (88 =
11 %23), 5 (96 = 3 % 25). As an added hypothesis, we suppose all
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0.19 — {11}

"

Empty 0..34 — {11}

IV

0.10 — {12}  0..11 — {13}

VN

0.14 — {14} Empty
SN
Empty 0..7 — {15}

Figure 6 — Initial tree before addition of a binding

off and modu are given in such a way that the adjacent intervals of this
rangemap can be stitched together provided they hold the same value.

Suppose that we now want to add the following binding 31..65 —
{14} to this rangemap of Fig. 6. The operation can be decomposed as
follows (see also Fig. 7):

1) Find the correct spot according to rank (Def. 1) where the new
node should be;
2) See if it can be stitched together with some node of its subtrees;

3) Call make_node and rezip if needed, stitch if needed.

5.4. Merging rangemaps

From the get-go, we were aiming at a mergeable structure and our
module of course contains a suitable function with the following imme-
diate signature:

val merge: int64 — t — int64 — t — int64 * t
(x [offset_tl] — [tl] — [offset_t2] — [t2] —
[current_new_tree_offset] * [new_tree] x)
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.\(\gﬁ/i\/~
0..19 — {11}
/ \‘31
Empty 0...34 — {11}

31..65 — {14} _1/ \r59

0.10 — {12}  0.11 — {13}

AN

@@. 0.14 — {14} Empty
.@\?‘ / \+15
\&@{‘ ‘ Empty 0.7 — {15}
010 (11} stehing (P2, 0.19 = {11}
/ 31 / 31
Empty 0..34 — {14} Empty 0...49Ge 34+14+1) — {14}
—1 T Naso RN
0.10 — {12} 10.11 — {13} - 0.10 - {12}  0.11 — {13}
extend —— —2% \ \\\\ —9Y(ie. 154% \
0.14 — {14} “=.__Empty ; 0.7 — {15} Empty
’/7___,/-——\44:15_,:\_}\\ rezip
" Empty 0.7 {15}

Figure 7 — Inserting a node: stitching illustrated
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This function, despite its primary importance, is not unnecessarily
complicated to implement. Actually, it makes extensive use of the
make_node function and of recursive calls to itself. A simplified ver-
sion can be informally stated as follows, assuming n; and ns are the
current nodes of the two trees ¢; and ¢, to be merged:

OHIf L, NI, =0
Let 1,4, be the highest ranked node between n; and ny, and n,,;, the
other one, and t,,,, and t,,;, the respective trees they belong to. Let
also subt}  be the subtree n,,;, should be included in: it is the left
subtree of t,,4, if max(n,in) < min(nm,..), the right one otherwise.
Let subt,, ... be the other unchanged subtree of ¢,,4, -

Merge subt; . and t,,;, into a new tree ¢’

Make a new tree from 7,4, t' and subt_ ..

2) Otherwise, let I = I,,, N I,,, and compute the value(s) it contains
according to the ones contained in I,,, and I,,,. Let 5, I> = I, \I.
These two new intervals represent the lower part of /,,, not in I and the
upper part of /,,, notin I. Let similarly I, I = I,,\I.

Add I}, to the left subtree of ¢, and I}, to the right subtree of ¢,. Do the
same for I3, I, and t;.

Merge both new left subtrees and merge both new right subtrees.

Make a new smart tree with [ and the results of the previous recursive

calls.

Note that the values mapped to the intervals are not changed except
when the two trees have overlapping intervals.

5.5. Caching

As noted in Sect. 4.4, the implemented functions often need to access
the rightmost and leftmost bindings of a subtree (i.e. those directly on
the right and left-hand side of the current node if the interval is looked
at linearly). This is right now naively done by recursively descending
the subtree. Another solution would consist in borrowing ideas from
monoid caching trees [8] and have fingers [7] pointing at the rightmost
left and leftmost right children.
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However, this solution was not chosen. We chose to save the two
words necessary at each node to record the rightmost and leftmost bind-
ings. In our context, the saved space can be put to a better use by creat-
ing caches for high-level operations, even if in the case of a cache miss,
the operation takes a little longer because of the logarithmic access to
these leftmost and rightmost bindings.

5.6. Sharing

The representation of relative subtrees described in Sect. 4.3 allows
maximal sharing on subtrees of the data structure: rangemaps are actu-
ally DAGs and not trees. The implemented version is on the right-hand
side of Fig. 8. Note that Empty subtrees are not drawn as shared al-
though they actually are: this comes for free for all nullary constructors
in OCaml with no need of any support in the rangemaps implementa-
tion.

The trees in Fig. 8 represent shared and unshared rangemaps for
the sequential interval: 0..19 — {11},20.29 — {12},30..49 —
{11},50..59 — {12},60..100 — {11} with respective ranks
00, 3,9, 3, 6.

Unshared Shared
0..19 — {11} 0..19 — {11}
/ 60 / 60
Empty 0..40 — {11} Empty 0..40 — {11}
AN AN
0..19 — {11} Empty 0..19 — {11} Empty
N —10( ) +20
0.9 {12} 0.9 {12} 0.9 — {12}

Figure 8 — Unshared vs. shared version of the same tree
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The benefit of sharing subtrees can be quite significant. A look at
Fig. 9 and Fig. 10 shows the expected space gain when the leaves offer
a repeated pattern of similar bindings.

The state of sharing observed in these figures is also a consequence
of the fact that nodes of rangemaps are linked relatively to their parents.

root

N N
/\ /\ /\ /\

12 13

AAA AN AR A

Figure 9 — Unshared subtrees

root

M
JANYANVAY

Figure 10 — Shared subtrees

5.7. Finding one value

Rangemaps should allow for efficient requests when searching for
specific intervals. One difficulty to watch for is that the value to be read
may range over more than one interval-key of the rangemap.
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More specifically, the find function has the following type:

val find: int64 — int64 — t — V.t
(x [offset] — [size] — [tree] — [value] =)

Requests are made to read a specific size from a given offset in a tree
assumed to be rooted at 0. The bindings found at the requested location
may require various amounts of processing in the making of the answer:

— the simplest case happens when the request corresponds exactly to
an interval stored in the rangemap: it suffices to return the stored value;

— the request may be for part only of a binding as it exists in the tree:
in this case a function provided as a parameter of the data structure is
called to extract the relevant bits of the stored value;

—in the most complex case, the request encompasses more than one
interval as illustrated in Fig. 11: values extracted from the relevants
bindings are stitched together to form a new value;

Actually, the second case is a specific form of the last case, where no
real stitching of values is involved.

The code for the find function goes as follows. We see the two
cases and the call to extract_bits_and_stitch which does the work
of merging values from the current extracted bits and the accumulator.
How the stitching is done actually heavily depends on the kind of val-
ues stored in the bindings of a rangemap. From the point of view of a
programmer who wants to use the data structure, the functions that need
to be provided are those respectively for extracting a part of a binding
and to put together a value by stitching together such parts. Also, note
that when several bindings contribute to the result, the navigation from
one binding to the next relies on move_right which uses the zipper
returned by find_bit.

let find offset size tree =

(¥ locate the node we want x)

let sup_to_read = offset + size - 1 in

let z, cur_off, root = find_bit offset tree in
match root with

(* Not_found has been raised in the Empty case x)
| Empty — assert false

| Node (max, _, _, _, _subr, r, m, v) —
(x We need not further than the current_interval
AND the alignment wrt to values is okay

*)
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if (Int.le sup_to_read sup_interval) &&

... (x some conditions related to values x)

then v

else

(* V.singleton_zero is the neutral element
for mergeable values

*)

let acc = ref V.singleton_zero in
let cur_root = ref root in

let cur_off = ref cur_off in

let cur_zip = ref z in

while (Int.le !cur_off sup_to_read) do
(x extract_bits from current interval
and stitch it with the current value in
[acc]
*)
acc < extract_bits_and_stitch
(x initial [offset] and [size] to read x)
offset size
(x offset and node from which to extract bits x)
tcur_off !cur_root
(x accumulated merged values up until now x)
tacc;
if sup_interval > sup_to_read then
(* Bogus offset set to biggest integer to end the loop =)
cur_off <« max_int

else
(* Nominal behavior: do next binding x)
begin
let o, t, z = move_right !cur_off !cur_root !cur_zip in

cur_root <« t;

cur_zip + z;

cur_off <+ o3
end
done;
tacc

5.8. Caching calls about finding values

When used in the value analysis, one major cause for performance
degradation in lookups is when the location to be read is itself not
known with precision. It could for instance be the whole range of the
indices of an array, or the addresses of all occurrences of a specific field
in a struct array.

It is this higher-level query for a set of indices that rangemaps have
been designed to be able to optimize through caching. Consider the
analysis of, say, a loop scanning an array. At each iteration in the search
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binding 1 binding 2 binding 3

y v V: (Y (Y v (Y V-
U1 Y2 g Y2 g Y2 Y2 Y2 Y2 | Us

Offsetmap ‘

offset

!

Interval to read

size
current offset 2
current offset 1
call 1

Arguments

node 1 call 2

node 2

Figure 11 — Construction of new values ranging over multiple intervals

for the loop’s fixpoint, similar (but not necessarily identical) sets of
indices are used in requests to similar (but not necessarily identical)
rangemaps. Large sets of indices are represented as intervals with peri-
odicity information in order to distinguish requests for all occurrences
of a specific field in an array of structs from requests for all values from
the array. This situation occurs commonly in analyzed programs.

We should avoid caching too specific information, for instance spe-
cific to one requested set of indices, or to one rangemap. The key of
a cache entry is a pair made from a subtree and a subrequest. Our
proposal is to cache only requests for any kind of specific periodicity
information, reading from the entire range of a subtree. It seems to us
that these are the entries that are most likely to be reused.

6. Conclusion and further work

In this article, we have introduced rangemaps, a data structure to rep-
resent persistent maps indexed by intervals. We have shown the unique
properties of rangemaps and highlighted details of the current prototype
implementation.
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The next step is to replace the existing ad-hoc data structure for
representing char arrays in Frama-C’s value analysis! by rangemaps.
We expect this will increase the efficiency of the value analysis both in
terms of memory used and speed.

The first preliminary (internal and unpublished) results also show
an interesting improvement on the accuracy of the analysis. We are
looking forward to the possibility to run benchmarks comparing more
deeply the current ad-hoc representation and the representation based
on rangemaps.
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