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Abstract

This paper describes two syntactic extensions to Smt-Lib scripts: lambda-expressions and poly-

morphism. After extending the syntax to allow these expressions, we show how to update the typing

rules of the Smt-Lib to check the validity of these new terms and commands. Since most Smt-solvers

only deal with many-sorted first-order formulas, we detail a monomorphization mechanism to allow to

use polymorphism in Smt-Lib syntax while retaining a monomorphic solver core.

1 Introduction

Dissemination of Smt-solvers requires they are powerful, trustable and open (i.e. easy to
interface). The Smt-Lib format [BST10] is an initiative from the Smt community to address
the last aspect, by offering both a common language to describe problems and a command
language to interact with the solver.

The Smt-Lib format has evolved in the recent years from version 1.2 to version 2.0 to
simplify the definition of the syntax for the part of the language that is responsible for problem
descriptions (i.e. declaration of the signature and assertion of logic expressions) on the one
hand, and to enrich the commands that allow third-party tools to interact with complying
SMT solvers.

veriT is an open-source solver jointly developed at INRIA and UFRN. Early versions of
the veriT solver implemented several extensions to version 1.2 of the Smt-Lib format: macro-
definitions, λ-expressions and β-reduction. A later extension included polymorphic sorts, sig-
natures and assertions. A successful application of these extensions has been to apply SMT
solving to verify proof obligations stemming from set-based formalisms (namely, B and Event-B)
using standard Smt-Lib logics (AUFLIA) [Dé10, DFGV12, Dé13].

The rationale of this application is essentially the following:

• A set is encoded as its characteristic predicate. For instance, {x · 0 ≤ x ≤ 9} is encoded
as:

(lambda ((x Int)) (and (<= 0 x) (<= x 9))).

• Set operations are encoded as higher-order functions. For instance, set intersection is
encoded as a (polymorphic) macro called inter defined as:

(define−fun (par (X) (inter (lambda ((f (X Bool)) (g (X Bool)) (x X)) (and (f x) (g x ))))) ,

and set membership by the macro named member and defined as:

(define−fun (par (X) (member (lambda ((x X) (f (X Bool))) (f x ))))) ,

in both definitions, X denotes a type variable, its scope being the definition itself.



To handle such expressions, veriT implements a processor that performs macro-expansion and
β-reduction steps as well as type inference. For instance, the formula 0 ∈ ({x·x ≥ 0}∩{x·x ≤ 0})
would be encoded as (member 0 (union (lambda (x Int) (>= x 0)) (lambda (x Int) (<= x 0)))), and the result of
processing this expression is (and (>= 0 0) (<= 0 0)). In addition, this processor rewrites equalities
between lambda expressions as universal quantifications. Once all steps have been applied, if
the goal is not first-order logic, then veriT emits an error message and halts.

Some of these extensions were included in the Smt-Lib format: polymorphic sorts , though
restricted to theory files, and macro-definition (named function definitions). In this paper,
we thus discuss modifications to the Smt-Lib format 2.0 corresponding to the extensions to
Smt-Lib format 1.2 that were implemented in the solver veriT. It is noteworthy that these
modifications maintain backward compatibility with the existing definition of the Smt-Lib
format. Also we discuss how to rewrite a problem expressed with the proposed extensions to
plain Smt-Lib 2.0.

This paper is organized as follows. Sec. 2 presents the extensions made to Smt-Lib, intro-
ducing polymorphism at the Smt-Lib script level. This leads to an updated set of typing rules,
mainly for Smt-Lib terms, which is discussed in Sec. 3. Using these rules, we detail a strategy
to generate a monomorphic version of our target problem in Sec. 4. Finally, we discuss the pros
and cons of our solution in the context of related work in Sec. 5 and detail ongoing and further
work in Sec. 6.

2 Extensions to Smt-Lib

We propose two extensions to the Smt-Lib format:

• anonymous functions (i.e., λ-abstractions) and their applications;

• parametric polymorphism for assertions and function types.

The Smt-Lib already features two flavors of polymorphism:

• parametric polymorphism for sorts and function signatures, but only for background the-
ories;

• ad-hoc polymorphism because functions can be overloaded.

The extension adds parametric polymorphism to assertions and function definitions and
declarations. The additional introduction of λ gives a very functional, higher-order, flavor to
this extended Smt-Lib. The typing rules presented in Sec. 3.1 even allow let-polymorphism
inside the Smt-Lib.

However, λ-abstractions as we envision them will not add much expressiveness as we want
to be able to get a first-order problem only through the application of β-reduction. Thus, we
will not handle a reduced problem with residual higher-order or partial applications. We see
the addition of λ-abstractions as a convenient mechanism to encode certain problems.

Also, the introduction of polymorphism at the syntactic level does not fundamentally change
the expressive power available for Smt-Lib scripts. Indeed, the combination of type schemes to
express background theories and overloading of functions permitted by the Smt-Lib standard
already covers most functionalities which ML-style let-polymorphism permits. Nonetheless, we
argue that polymorphism in scripts is syntactically more convenient than writing every ground
instances of the expressions we are interested in.

The next section presents the concrete syntax for the two extensions mentioned above.



2.1 Syntax extensions for Smt-Lib

Anonymous functions are terms introduced using lambda, which becomes a keyword. Polymor-
phic terms reuse the same par keyword as the polymorphic elements of the Smt-Lib theories.
The syntactic extensions are summarized in the BNF extract of Fig. 1.

〈p a r f u n c t i o n a r g s 〉 : : = par (〈symbol〉+ )

〈par command〉 : : = ( define−fun (〈p a r f u n c t i o n a r g s 〉 (〈symbol〉
(〈so r ted va r〉∗ ) 〈s o r t 〉 〈term〉 ) ) )

| ( declare−fun (〈p a r f u n c t i o n a r g s 〉 (〈symbol〉 (〈s o r t 〉∗ ) 〈s o r t 〉 ) ) )
| ( assert (〈p a r f u n c t i o n a r g s 〉 〈term〉 ) )

Figure 1: BNF extensions for Smt-Lib

Function types are allowed as the return type of functions, due to the inclusion of λ-term.
The choice made is to declare a function type as a list of types. For example the function declara-
tion (declare−fun f (Int Int ) Int ) is not the same as the function declaration (declare−fun f ((Int Int )) Int ).
The former is a function which expects two integers and returns an integer, the latter expects
only one argument — a function from integer to integer — and returns an integer. Now, the
only possible problem is to distinguish in a sort expression (X Y) between a sort meant to express
a function type and a sort which is the application of a sort of arity ≥ 1 to its argument, like
(Array Int ). This is not a practical problem as sort arity is explicitly stated. Therefore, if the
arity of X is greater than 1, we say it is a sort application, otherwise it is a function type.

3 Typing extended Smt-Lib

This section details the rules for typing extended Smt-Lib scripts. These rules extend the
current set of rules for Smt-Lib1.

Typing polymorphic terms is a necessary step towards uncovering monomorphic ground
instances of polymorphic terms. Various type instantiations of the same polymorphic functions
will lead in Sec. 4 to the generation of multiple monomorphic versions of the same function.
Fortunately, ad-hoc polymorphism through overloading is permitted by the Smt-Lib standard.

3.1 Typing terms

The type of polymorphism we introduce in the extended Smt-Lib is ML-style prenex polymor-
phism [Pie02]. The typing rules of the system are described in Fig. 3. They can be seen as
an adaptation of a Damas-Hindley-Milner [Mil78, Hin69] type system to the Smt-Lib syntax.
These rules manipulates Smt-Lib sorts, type variables, tuple types and function types:

Definition 1 (Types). Let S be a set of sorts, V be a set of (type) variables. The set of
well-formed types T is defined inductively as follows:

1. if s ∈ S, then s ∈ T

1Detailed in Section 4.2.2 of the Smt-Lib Standard [BST10]



( set−logic AUFLIA )

( define−fun ( par (X) ( empty ( ( e X ) ) Bool f a l s e ) ) )

( define−fun ( par (Y)
( i n s e r t ( ( e Y) ( s (Y Bool ) ) ) (Y Bool )

( lambda ( ( e1 Y ) ) ( or (= e e1 ) ( s e1 ) ) ) ) ) )

( declare−fun ( par (Z ) ( f l a t ( ( ( Z Bool ) Bool ) ) (Z Bool ) ) ) )

( assert (= ( f l a t empty ) empty ) )

( assert ( par (X)
( f o r a l l ( ( ss ( ( X Bool ) Bool ) ) )
(= ( f l a t ( i n s e r t empty ss ) ) ( f l a t ss ) ) ) ) )

( assert ( par (X)
( f o r a l l ( ( e X) ( s (X Bool ) ) ( ss ( ( X Bool ) Bool ) ) )

(= ( f l a t ( i n s e r t ( i n s e r t e s ) ss ) )
( i n s e r t e ( f l a t ( i n s e r t s ss ) ) ) ) ) ) )

( assert ( f o r a l l ( ( s ( I n t Bool ) ) ) (= ( f l a t ( i n s e r t s empty ) ) s ) ) )

( check−sat )

Figure 2: A polymorphic specification

2. if v ∈ V, then v ∈ T
3. if T1 ∈ T, T2 ∈ T, T1 × T2 ∈ T
4. if T1 ∈ T, T2 ∈ T, T1 → T2 ∈ T

Notations. Type variables will be denoted by α. ᾱ represent a set of type variables (possibly
empty). A type is said to be ground if it has no type variables. A type substitution is a mapping
from type variables to types (ground or not). The application of a type substitution is denoted
using := and extended to variable sets. Hence T [ᾱ := T̄ ′] substitutes in T every member of
ᾱ by a corresponding type in T̄ . A typing environment Γ is a mapping from identifiers to
types. Universal quantification over type variables is denoted ∀T, in order to separate this
quantification from the universal quantifier ranging over term variable. For terms, x or xi will
stand for variables, t or ti will stand for any term.

Typing rules. The rules of Fig. 3 use two additional functions:

• a function to compute the set of free type variables of a type, denoted fvT ;

• a generalization function Gen, which helps compute the most general type possible for a
let-bound variable. This function is defined as follows:

Gen(T,Γ) = ∀T(fvT (T )\fvT (Γ)).T



The rules distinguish between curried functions (→ type), where partial application is al-
lowed, and uncurried functions, where the arguments are treated as a tuple, thus disallowing
partial application. Curried functions come from explicit λ-abstractions whereas the Smt-Lib’s
define−fun define functions which can only be totally applied.

Γ(x) = ∀Tᾱ.T
Γ ` x : T [ᾱ := T̄ ′]

Ax∀
Γ ` x as T : T

Axas

Γ, x1 : T1, . . . , xn : Tn ` t : bool Q ∈ {∀,∃}
Γ ` Q x1 . . . xnt : bool

Qua

Γ ` x1 : T1 . . . Γ ` xn : Tn Γ ` t : T

Γ ` λx1 . . . xn.t : T1 → . . .→ Tn → T
Lam

Γ ` t1 : T1 . . . Γ ` tn : Tn Γ ` f : T1 → . . . Tn → T

Γ ` f t1 . . . tn : T
App

Γ ` t1 : T1 . . . Γ ` tn : Tn Γ, x1 : Gen(T1,Γ), . . . , xn : Gen(Tn,Γ) ` t : T

Γ ` let ((x1 t1) . . . (xn tn)) t : T
Let

Figure 3: Typing rules

3.2 Typing commands

Smt-Lib commands can — and often do — change the global typing environment by introducing
new function names. Some commands can change the typing environment by introducing new
sorts, new variable names and new functions. In particular, assertions have to be type checked
to verify that the term being asserted is indeed a boolean.

Some commands, such as declaring or defining new sorts can also have an indirect influence
on the typing environment, as they modify the set of well-formed types. In this section, we
suppose that checking the well-formedness of types has been done prior to typing terms.

A Smt-Lib script is formalized as an ordered set of commands C. We represent a program
as a couple 〈Γ, C〉 where Γ represents the current typing environment, initially empty. In the
rules below, we only detail commands whose syntax have been changed.

Note that fundef rule follows the transformation explained in the Smt-Lib Standard (p.59).

〈Γ, {define-fun ∀Tᾱ(f ((x1 T1) . . . (xn Tn)) T t)} ∪ C〉
〈Γ ∪ {f : ∀Tᾱ.T1 × . . .× Tn → T}, {assert ∀Tᾱ ((∀x1 : T1 . . . xn : Tn f x1 . . . xn) = t)} ∪ C〉

fundef

〈Γ, {declare-fun ∀Tᾱ(f (T1 . . . Tn) T )} ∪ C〉
〈Γ ∪ {f : ∀Tᾱ.T1 × . . .× Tn → T}, C〉

fundec

〈Γ, {assert ∀Tᾱ t} ∪ C〉 Γ ` t : bool

〈Γ, C〉
Assert



The typing system is used in particular to find monomorphic occurrences of polymorphic
terms. In the next section, we will use it in a monomorphization procedure.

4 Monomorphization

Once we have checked that a set of commands is well-typed, we need to generate a Smt-Lib-
compatible version of it, since we do not want to have to change the core of the solver. It means
first that λ-terms must be eliminated and second, that the problem must be monomorphized.
The elimination of λ-terms has been discussed in Sec. 1 and uses β-reduction. Only if the
problem is still first-order after this elimination can we then try to compute a monomorphic
version of it. Otherwise we will simply discard it.

Bobot and Paskevich [BP11] have shown the undecidability of computing a minimal monomor-
phic set formulas equivalent to an original set of polymorphic formulas. However, we still aim
to present here a monomorphization method for polymorphic formulas. If needed, it should
compute an over-approximation of the minimal monomorphic set. Our implied goal is that
we hope monomorphization will be good enough in practice for most of our problems. The
proposed monomorphization is expected to be sound with respect to the original polymorphic
types. Hence, the unsatisfiability of the newly generated problem implies the unsatisfiability
of the original problem but its satisfiability does not in general imply the satisfiability of the
original problem.

Monomorphization example. Let us detail the example of Fig. 2 to show what we would
like to achieve on this specific case. On this example, monomorphization is expected to fail,
so that we can also explain how the procedure works and how we deal with failure. In the
example, three function signatures are defined, where type variables are implicitly universally
quantified:

• emptyset: αe→B

• insert: ((αi×(αi→B))→αi→B)

• flat :(αf→B→B→αf→B)

The first step identifies polymorphic and monomorphic instances of terms through typing.
In the example, we have three polymorphic formulas. These formulas are detailed below. For
the sake of readability, we write type annotations only for co-domains, according to the initial
function signatures, and hide annotations for term variables.

flat〈α→B〉(emptyset〈α→B→B〉) = emptyset〈α→B〉 (4.1a)

∀ss : α→B→B

(flat〈α→B〉(insert〈α→B→B〉(emptyset〈α→B〉, ss)) = flat〈α→B〉(ss))
(4.1b)

∀e : α, s : α→B, ss : α→B→B

(flat〈α→B〉(insert〈α→B→B〉(insert〈α→B〉(e, s), ss))

= insert〈α→B〉(e, flat〈α→B〉(insert〈α→B→B〉(s, ss))))

(4.1c)

In Fig. 2, the unique monomorphic assertion is:

∀s : Z→B (flat〈Z→B〉(insert〈Z→B→B〉(s, emptyset〈Z→B→B〉)) = s)



Such monomorphic assertions drive the procedure. Basically, they provide the set of ground
types that forms the basis for the generation of monomorphic instances of polymorphic func-
tions.

The second step consists in computing the set of new terms derived from the injection
of monomorphic elements. Using type substitutions, we can generate monomorphic special-
izations F = {emptyset[αe:=Z→B], insert[αi:=Z→B], flat[αf :=Z]} of the polymorphic functions. We
try to substitute the polymorphic occurrences of the three terms emptyset, insert, flat by their
monomorphic counterpart whenever we can in the polymorphic terms 4.1a, 4.1b and 4.1c, using
a leftmost-innermost strategy. This generates the following new set of monomorphic assertions:

flat〈Z→B〉(emptyset〈Z→B→B〉) = emptyset
〈Z→B〉
[αe:=Z] (4.2a)

∀ss : Z→B→B

(flat〈Z→B〉(insert〈Z→B→B〉(emptyset
〈Z→B〉
[αe:=Z], ss)) = flat〈Z→B〉(ss))

(4.2b)

∀e : Z, s : Z→B, ss : Z→B→B

(flat〈Z→B〉(insert〈Z→B→B〉(insert
〈Z→B〉
[αi:=Z](e, s), ss))

= insert
〈Z→B〉
[αi=Z](e, flat〈Z→B〉(insert〈Z→B→B〉(s, ss))))

(4.2c)

The procedure uses all monomorphic terms, and thus generates a number of new monomor-
phic assertions. At this point, one full pass of the procedure has been executed. This is repeated
while new monomorphic type instances are created. For example, the problem after the first
full pass now has uncovered new possible monomorphizations: emptyset[Z/αe] (in 4.2a and 4.2b)
and insert[Z/αi] (in 4.2c).

The procedure thus stops on a final problem if it does not uncover any more monomorphic
instances. There, only two things can happen:

• if polymorphic terms are only found in their original place (i.e. as subterms of the origi-
nal problem) then we have found a monomorphic expression of the original polymorphic
problem, if we remove the original polymorphic assertions and functions from the final
problem.

• if polymorphic terms are still present, then we declare that we have failed to find a
monomorphic expression of the original problem and halt there.

On the example, the procedural steps we have applied will never terminate because in the
term (flat emptyset) = emptyset, a new monomorphic type can be inferred for the leftmost emptyset
at any instantiation of the rightmost emptyset , which will be fed to the rightmost one, thus
looping forever.

Monomorphization fixpoint. The proposed monomorphization procedure is now summa-
rized. Let T represent the set of term occurrences of the original problem. Initially, the sets of
monomorphic and polymorphic term occurrences are empty.

1. Apply type inference and divide the terms in T into two sets M and P of monomorphic
and polymorphic term occurrences. If they are the same as the previous M and P , we
have reached a fixpoint and can stop. Otherwise, go to step 2.

2. Let M = {m1,m2, . . .mn} and P = {p1, p2, . . . pm}. For each (mi, pj), such that mi ∈M ,
pj ∈ P and mi = pj (i.e. mi and pj are two occurrences of the same term), substitute the



polymorphic pj by its monomorphic mi in the term t where pj occurs as subterm, thus
deriving a new term tij = t[pj := mi].

At the end of this step, we will have a new set of terms from the various possible pairings
between monomorphic and polymorphic occurrences of the same term, generating a new
set of term occurrences T ′. Let the new problem be represented by T ∪ T ′.

Non-termination. The fact that our procedure is possibly non-terminating is mitigated by
the fact that, in practice, we impose restrictions on time or in this case, on the number of full
passes. However, we would like to be able to guess possibly infinite expansions because we know
we will not be able to guarantee a sound and complete monomorphization. To this effect, we
have conjectured the following criterion, which depends on unification [Rob65]:

Conjecture 1 (Non-termination criterion). Let t and s be terms and s1 and s2 be two occur-
rences of s in the term t. Let T1 be the type inferred for s1 and T2 the one of s2. If T1 and
T2 cannot be unified because of a failing occur check then the monomorphization procedure will
not terminate.

5 Related work

The use of polymorphic logics on top of many-sorted or mono-sorted logics has received specific
attention in the last few years.

In the context of the Caduceus and Why [FM07, BFMP11], Couchot and Lescuyer [CL07]
describe how to translate ML-style polymorphic formulas into untyped and multi-sorted versions
of the original problem.

This method is refined by Bobot and Paskevich [BP11] who show a 3-staged treatment of
polymorphic formulas to translate them into many-sorted versions, including various possibili-
ties for the last translating step. Their proposals particularly take care of protecting data types
which are known to be handled by decision procedures by the targeted Smt-solvers. This work
is further detailed in Bobot’s thesis [Bob11].

Leino and Rümmer [LR10] consider the higher-order polymorphic specification language of
the Boogie2 tool [Lei08] that has to be translated to Smt-solvers which in general do not handle
polymorphism. They present two translations, one using type guards, the other adding types
as further function arguments.

These two last approaches already present various advanced techniques to translate poly-
morphism formulas for many-sorted Smt-solvers, each one coming from their experience and
needs, but do not tackle monomorphization. In the case of Bobot and Paskevich, their proof
of the undecidability of the monomorphization makes clear the reason why, while Leino and
Rümmer leave it as a possible further optimization.

Bobot et al. [BCCL08] have added built-in support for polymorphism inside the Alt-Ergo
prover [BCC+08]. Supporting polymorphic types at the solver level would indeed simplify the
addition of polymorphism at the specification level. We chose to keep things separated (for
now).

There is also a large body of work on the translation of typed higher-order-logic into untyped
first-order logic. In the context of using automation to help discharge proofs Hurd [Hur03]
or Meng and Paulson [MP08] can however rely on the type-checking capabilities of higher-
order provers to verify automated but untyped first-order proofs. Therefore they can even use
unsound translations and leave to the higher-order prover the task of checking the soundness of



the proof. In order to use Smt-solvers inside Isabelle/HOL [Pau94], the monomorphization step
of Blanchette et al. [BBP11] bears a strong similarity to our proposal.

6 Conclusion and further work

We have presented a summary of two backward compatible syntactic extensions made to the
Smt-Lib standard: λ-terms and polymorphism. We have shown how to deal with λ-terms
through β-reduction. We also have presented how we attempt to generate a monomorphic
version of our polymorphic problem using a fixpoint-like procedure. This procedure heavily
uses a Damas-Hindley-Milner like type inference algorithm to discover relevant monomorphic
instances of polymorphic terms.

The support for the proposed syntactic extensions is currently being implemented in the
development version of veriT. λ-terms are already supported and there is preliminary support
for polymorphic Smt-Lib scripts. We are currently testing the monomorphization process to
see how it behaves in practice.

The preservation of satisfiability means that, even in the case of a non-terminating monomor-
phization, we could devise a strategy to correctly use an unsatisfiable result at any step of the
monomorphization process. Indeed, this would mean that we have found an unsatisfiable subset
of the initial problem.

This strategy would be similar to depth-first iterative deepening [Kor85], which has been
heavily used in provers based on the tableau method [Smu95, DGHP99]. In tableaux, this is
used to generate possible term instantiations for universally quantified variables in order to find
a model refuting the original formula. In our case, after each deeper monomorphization step,
the Smt-solver would get to try a partial and new monomorphic problem containing only a
subset of possible type instantiations. If it can prove the unsatisfiability of this new problem,
we can stop. If not, we can — and should to preserve completeness — continue. In practice,
this iterative procedure will be bounded either by a time limit or by a given number of steps.

We believe this work is a step towards a more generalized use of polymorphism in the
context of Smt-solvers. These efforts might converge into an Alt-Ergo-like solution for provers
supporting Smt-Lib, indeed building polymorphism support in the prover and not only at the
syntactic level.

Acknowledgments. We warmly thank the anonymous reviewers for their helpful feedback
and constructive criticism, which already show promises of future fruitful discussions about the
subject of this paper.

References
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