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Abstract.
Deduction modulo is a theoretical framework for reasoning modulo a con-

gruence on propositions. Computational steps are thus removed from proofs,
thus allowing a clean separatation of computational and deductive steps. A
sequent calculus modulo has been defined in (Dowek et al., 2003) as well as a
resolution-based proof search method, in which the congruences are handled
through rewrite rules on terms and atomic propositions.

This article defines an automated proof search method for theorem proving
modulo (TaMeD ) based upon free-variable tableaus for classical logic .

Syntactic proofs for the soundness and completeness of the method are
given with respect to provability in the sequent calculus modulo. The proofs
follow a pattern similar to those of ENAR so that comparisons between some
characteristics of the two methods can be drawn.

Finally, some applications of deduction modulo as well as hints at further
or ongoing research in this field are briefly presented.

Keywords: tableau, automated theorem proving, rewriting, deduction mod-
ulo, sequent calculus modulo

Introduction

(Dowek et al., 2003) notice that automated theorem proving meth-
ods might lead to ineffective procedures if lacking some form of
goalness. If one tries to prove the following example

(a + b) + ((c + d) + e) = a + ((b + c) + (d + e))

with the associativity and identity axioms using a naive strategy, it
might end up running endlessly without finding the right solution
.

It would obviously be better to be able to apply a deterministic
and terminating strategy to check that the two terms are indeed
the same modulo associativity. This problem would actually be
more efficiently solved by computation (i.e blind execution) in-
stead of deduction (non-deterministic search), thus replacing the
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associativity axiom by a rewrite rule.
Advanced tableau-based methods allow to add equational theories
to the classical tableau method described in (Smullyan, 1968).
Methods for equality handling in tableaus can be found for exam-
ple in (Fitting, 1996), (Beckert, 1991), (Beckert, 1994), (Beckert
and Hähnle, 1992) or (Degtyarev and Voronkov, 2001) and it
permits to get complete methods combining deduction and term-
rewriting steps. However, rewriting on propositions is usually not
considered in the tableau methods described in these papers though
allowing rules rewriting propositions can be of practical use.
For example, the following axiom is part of the theory of integral
domains

∀x ∀y (x ∗ y = 0 ⇔ (x = 0 ∨ y = 0))

This yields the corresponding rewrite rule:

x ∗ y = 0 → x = 0 ∨ y = 0

In this rule, an atomic proposition is turned into a disjunction and
it is hard to see how it could be replaced by a rule rewriting terms.
Having the rewriting rule above, we can prove the proposition:

∃z (a ∗ a = z ⇒ a = z)

but the closed tableau can not be derived from its negated dis-
junctive normal form

a ∗ a = z a = z

since the traditional branch closure rule does not see that z can
be instantiated by 0.

Therefore a rule called Extended Narrowing must be added.
This rule suggests in this case the instantiation of z by 0 and
the tableau can be closed. The use of rewriting on propositions is
however restricted: the left parts of these rewriting rules must be
atomic propositions, avoiding thereby potential conflicts between
sequent inference steps and rewriting rules. Simply consider the
rewriting rule P ∧ Q → R which left-hand side can be proved in
the sequent calculus: this possibility is lost if it is rewritten to R.
The sequent calculus modulo is given in section 1 along with its
principal definitions and properties. Then, the automated proof
search method TaMeD is introduced in section 2 together with
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some notations, before stating the main theorem we intend to
prove in section 3 and the plan of the proof. Section 4 shows
the soundness and completeness of an intermediate method called
IC-TaMeD detailing the possible interactions between rewriting
and sequent rules. After the soundness and completeness of the
TaMeD method can be lifted from IC-TaMeD in section 5. A
brief comparison with the ENAR method ((Dowek et al., 2003)) as
well as hints at further research are finally given in the conclusion
of section 6).

1. The sequent calculus modulo

1.1. Definitions

The notions of terms, atomic propositions, propositions, sentences
are defined as usual in first-order logic, as they can for example be
found in (Fitting, 1996) or (Goubault-Larrecq and Mackie, 1997).
The standard substitution avoiding capture of the term t for the
variable x in a proposition P is written P [x := t]. Moreover, some
definitions of (Dowek et al., 2003) are recalled.

DEFINITION 1. (Rewriting-related vocabulary). A term rewrite
rule is a pair of terms l → r, where the free variables of r must
occur in l.
An equational axiom is a pair of terms l = r.
A proposition rewrite rule is a pair of propositions l → r, where l
is an atomic proposition, and the free variables of r must occur in
l.

DEFINITION 2. (Class rewrite system). A class rewrite system
is a pair denoted RE consisting of R — a set of proposition
rewrite rules — and E — a set of term rewrite rules and equational
axioms.

Let us define the rewriting relations used in the paper.

DEFINITION 3. (
R→ and

RE→). Let R be a proposition rewrite sys-

tem, the proposition P R-rewrites to P ′, denoted P
R→ P ′, if

P|ω = σ(l) and P ′ = P [σ(r)]ω, for some rule l → r ∈ R, some
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occurrence ω in P and some substitution σ. As usual when applying
σ, quantified variables of r are renamed to avoid captures.
Let RE be a class rewrite system, the proposition P RE-rewrites to

P ′, denoted P
RE→ P ′, if P =E Q, Q|ω = σ(l) and P ′ =E Q[σ(r)]ω,

for some rule l → r ∈ R, some proposition Q, some occurrence ω
in Q and some substitution σ.

1.2. The sequent calculus modulo

The sequent calculus modulo (see figure 1) is an extension of the
sequent calculus defined for first-order classical logic and if the
congruence =RE is taken to be the identity, this sequent calculus
becomes the usual one. One might notice that the axiom rule
requires not just unifiability of the left proposition and the right
one but they have to be identical modulo the congruence. Thus
free variables cannot be instantiated and are treated as constants.

The next two propositions are direct results of the definitions:

PROPOSITION 1. If =RE is a decidable congruence, then proof
checking for the sequent calculus modulo is decidable. This is in
particular the case when the rewrite relation −→RE is confluent
and (weakly) terminating.

PROPOSITION 2. If P =RE Q then Γ `RE P, ∆ if and only if
Γ `RE Q, ∆ and Γ, P `RE ∆ if and only if Γ, Q `RE ∆ and the
proofs have the same size.

PROPOSITION 3. If a closed sequent Γ `RE ∆ has a proof, then
it also has a proof where all the sequents are closed.

1.3. Equivalence between ` and `RE

This subsection states a really important property regarding the
equivalence between the classical sequent calculus and the sequent
calculus modulo, as proved in (Dowek et al., 2003). Indeed, it states
the soundness and completeness of the sequent calculus modulo
with respect to first-order logic.

DEFINITION 4. (Compatibility). A set of axioms K and a class
rewrite system RE are said to be compatible if:
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P `RE Q
axiom if P =RE Q

Γ, P `RE ∆ Γ `RE Q, ∆

Γ `RE ∆
cut if P =RE Q

Γ, Q1, Q2 `RE ∆

Γ, P `RE ∆
contr-l if P =RE Q1 =RE Q2

Γ `RE Q1, Q2, ∆

Γ `RE P, ∆
contr-r if P =RE Q1 =RE Q2

Γ `RE ∆

Γ, P `RE ∆
weak-l

Γ `RE ∆

Γ `RE P, ∆
weak-r

Γ, P, Q `RE ∆

Γ, R `RE ∆
∧-l if R =RE (P ∧Q)

Γ `RE P, ∆ Γ `RE Q, ∆

Γ `RE R, ∆
∧-r if R =RE (P ∧Q)

Γ, P `RE ∆ Γ, Q `RE ∆

Γ, R `RE ∆
∨-l if R =RE (P ∨Q)

Γ `RE P, Q, ∆

Γ `RE R, ∆
∨-r if R =RE (P ∨Q)

Γ `RE P, ∆ Γ, Q `RE ∆

Γ, R `RE ∆
⇒-l if R =RE (P ⇒ Q)

Γ, P `RE Q, ∆

Γ `RE R, ∆
⇒-r if R =RE (P ⇒ Q)

Γ `RE P, ∆

Γ, R `RE ∆
¬-l if R =RE ¬P

Γ, P `RE ∆

Γ `RE R, ∆
¬-r if R =RE ¬P

Γ, P `RE ∆
⊥-l if P =RE ⊥

Γ, {t/x}Q `RE ∆

Γ, P `RE ∆
(Q, x, t) ∀-l if P =RE ∀xQ

Γ `RE {c/x}Q, ∆

Γ `RE P, ∆
(Q, x, c) ∀-r if P =RE ∀xQ and c fresh constant

Γ, {c/x}Q `RE ∆

Γ, P `RE ∆
(Q, x, c) ∃-l if P =RE ∃xQ and c fresh constant

Γ `RE {t/x}Q, ∆

Γ `RE P, ∆
(Q, x, t) ∃-r if P =RE ∃x Q

Figure 1. The sequent calculus modulo
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−P =RE Q implies K ` P ⇐⇒ Q.

−for every proposition P ∈ K, we have `RE P .

PROPOSITION 4. For every class rewrite system RE, there is a
set of axioms K such that K and RE are compatible.

PROPOSITION 5. (Equivalence). If the set of axioms K and the
class rewrite system RE are compatible then we have:

K, Γ ` ∆ if and only if Γ `RE ∆

Proof: See (Dowek et al., 2003). ♦
The latter proposition entails that the two formalisms can be

used to deduce the same theorems. Of course, a proof of the
same theorem may be of different size depending on the formalism
used. Actually, proof are generally smaller in the sequent calculus
modulo.

2. The TaMeD method

This section extends the classical tableau method for first-order
classical logic as defined in (Smullyan, 1968) and (Fitting, 1996)
to a tableau method where congruences are built-in. In the rest of
this paper, we assume the relation −→∗

RE to be confluent.

2.1. Labels

The usual first step of a tableau based proof search method is
to transform the proposition to be proved (or rather refuted)
into a set of branches that involves skolemization. In fact, several
skolemized forms are possible for a proposition. Take for example
the closed formula ∀x ∃y P (0, y) where the variable x does not
occur: the Skolem constant f could be as well be nullary as unary,
yielding respectively P (0, f) or P (0, f(x)). The latter is chosen in
this paper because of the following fact: if we had an equation
x ∗ 0 = 0 leading to an E-equivalence between ∀x ∃y P (0, y)
and ∀x ∃y P (x ∗ 0, y), the Skolem symbols would have the same
arity in both cases. This choice is implemented by memorizing the
universal quantifier scope of each subformula during the tableau
form computation by associating a label.
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DEFINITION 5. (Labeled proposition). A labeled proposition is
a pair P l formed by a proposition P and a finite set l of variables
containing all the free variables of P called its label.

DEFINITION 6. (Substitution in a labeled proposition). When we
apply a substitution Θ to a labeled proposition, each variable x
of the label is replaced by the free variables of Θx. Two labeled
propositions P l and Ql′ are E-equivalent if P =RE Q and l = l′.
The labeled proposition P l R-rewrites to Ql′ if P R-rewrites to Q
(definition 3) and l = l′.

2.2. From formulas to tableaus

The notations used throughout the paper to represent transfor-
mations of a tableau are inspired by the ones that can be found
either in (Dowek et al., 2003) for clausal form transformations
and in (Degtyarev and Voronkov, 1998; Degtyarev and Voronkov,
2001) for tableaus. The more classical tree-like presentation of
(Smullyan, 1968; Fitting, 1996) is therefore not use, mostly does
not give at first glance a global view of the tableau transformation
in the expansion rules. The names α−, β−, γ−, δ−formulas are
those commonly used in tableau-related literature.

2.2.1. Definitions and notations
Let us introduce some basic definitions regarding tableaus.

− A branch is a multiset {Q1, . . . , Qn} of formulas.

− A fully expanded branch (fxp-branch ) of tableau is a multiset
{P1, . . . , Pn} of formulas such that every Pi is a literal, i.e.
either an atomic proposition or the negation of an atomic
proposition.

− A tableau is a multiset {B1 | . . . | Bp} of branches.

− A branch is said closed if a contradiction can be derived from
the formulas composing the branch. In the case of proposi-
tionnal classical logic, it means that P and ¬P are on the
same branch.

main.tex; 27/01/2006; 11:07; p.7



8

− A tableau is then said closed if every branch of the tableau is
closed.

− The closed tableau is denoted � in this paper.

The notations used throughout this paper are briefly sumed up
thereafter. Local changes will be explicitly stated as they arise.

− Terms are denoted l, r, s, t, . . .;

− Propositions are denoted L, P, Q, R, . . .;

− Branches are denoted by B, Γ, Φ, Ψ, . . . and B, P is a notation
for the set B ∪ {P};

− Tableaus are denoted T ,U ,V , . . . and T | B is a notation for
T ∪ B;

− fxp-branches are denoted by the same symbols as sets of
propositions and sets of fxp-branches are denoted as sets of
sets of propositions;

− When B = {P1, . . . , Pn} is a set of propositions then tnf(B) or
tnf(P1, . . . , Pn) is taken to be the same as tnf(P1 ∧ . . . ∧ Pn).

− Labeled propositions are denoted P l where l is the label of
the proposition P . Notations for branches and tableaus are
naturally extended with labeled propositions.

2.2.2. Tableau expansions
A presentation of the tableau expansion calculus is given below
which is used to reduce a formula to what we will call its tableau
normal form.

DEFINITION 7. (Tableau normal form: tnf). To put a set of non-
sentences in tableau form, we first label them with an empty set.
The universally quantified propositions are also labeled with a given
integer nx denoting the allowed number of γ-expansions per γ-
formula (otherwise the computation may be infinite), where x is
the universally quantified variable bound in the γ-formula. We
consider the following transformations on multisets of multisets
of labeled propositions.
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β T | (B, (P ∨Q)l))
tnf−→ T | B, P l | B, Ql

β T | (B,¬(P ∧Q)l))
tnf−→ T | B,¬P l | B,¬Ql

β T | (B, (P ⇒ Q)l))
tnf−→ T | B,¬P l | B, Ql

α T | (B, (P ∧Q)l)
tnf−→ T | B, P l, Ql

α T | (B,¬(P ∨Q)l)
tnf−→ T | B,¬P l,¬Ql

α T | (B,¬(P ⇒ Q)l)
tnf−→ T | B, P l,¬Ql

α T | (B,¬¬P l)
tnf−→ T | B, P l

γ T | (B, (∀xP )l
nx

)
tnf−→ T | (B, (∀xP )l

nx−1, P
l,x where x is

a fresh variable and nx > 1

γ T | (B, (∀xP )l
1)

tnf−→ T | B, P l,x where x is a fresh
variable

γ T | (B,¬(∃xP )l
nx

)
tnf−→ T | B,¬(∃xP )l

nx−1,¬P l,x where
x is a fresh variable and nx > 1

γ T | (B,¬(∃xP )l
1)

tnf−→ T | B,¬P l,x where x is a fresh
variable

δ T | (B, (∃xP )y1,...,yn)
tnf−→ T | B, (P{x := f(y1, . . . , yn)})y1,...,yn

where f is a fresh Skolem symbol

δ T | (B,¬(∀xP )y1,...,yn))
tnf−→ T | B, (¬P [x := f(y1, . . . , yn)])y1,...,yn

where f is a fresh Skolem symbol

−T | (B,⊥l)
tnf−→ T

−T | (B,¬ ⊥l)
tnf−→ T | B

Remark. [On free variables, tnf-equality]
Free variables created during γ-expansions are always fresh and

the notation for them in tnf is an abused shortened notation for:
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T | (B, (∀xP )l
1)

tnf−→ T | B, P l,z where z is a fresh variable and x
is replaced by z in P .

tnf(T ) = tnf(U) means that tnf yields the same result for both
tableaus modulo an appropriate renaming of free variables. In

particular it means that either T
tnf

→? U , U
tnf

→? T or T and U
are identical up to some renaming of free variables.

The tnf transformation deals with ∀-quantifiers by adding an
integer to annotate the allowed number of γ-expansions. If tnf for
a given integer does not give a fully expanded tableau that can
be closed, it is possible to go on by iterative deepening. Allowing
multiple γ-expansions is required for the completeness of the whole
calculus.

2.2.3. Properties
This section briefly proves the termination and soudness properties
of tnf. An ordering is defined on the tnf calculus of definition 7 as
follows:

DEFINITION 8. (tnf-ordering). The tnf-ordering is defined as a
lexical order on tableaus using the following pair:

−As first component, we take the multiset ordering of the nx’s
associated with the representation of the universally quantified
variables in the labels of the propositions of each branch.

−As second component , we take the multiset of pairs (a, b)
where a is the number of occurrences of the symbols ∧,∨,⇒
,⊥,∀,∃ and b the number of occurrences of the symbol ¬ for
each branch in T .

This ordering is used to prove the termination of tnf.

PROPOSITION 6. (Termination). The tnf transformation termi-
nates for any given allowed number n of γ-expansion per γ-proposition.
The tableau n-normal form is defined as the result of tnf for a given
formula with a given γ-expansions allowed n. This result will also
be called tableau normal form.

Proof: Each rule decreases the complexity of the tnf-ordering
defined on a tableau T in definition 8. ♦
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Before adding any deduction modulo ability to tableaus, one
needs to ensure that tnf transformations preserve satisfiability.
Some more definitions are needed before proving this property.

DEFINITION 9. (Free variables of a branch). Let B = {P1, . . . Pn}
. The free variables of B are defined as the union of the sets of free
variables of P1, . . . , Pn.

DEFINITION 10. (∀ notation). Let the Γi be multisets of propo-
sitions. Let x1, . . . , xn be the union of the free variables of the Γis.
We will use the following notation:

∀(Γ1 ∨ . . . ∨ Γn) = ∀x1, . . . ,∀xn(Γ1 ∨ . . . ∨ Γn)

The tnf transformations are a restricted case of the general
free-variable tableau rules of (Fitting, 1996) and (Letz, 1998) and
therefore the reader is referred to the soundness proof of (Letz,
1998) (pp. 165-167).

LEMMA 1. (tnf soundness). Let Γ1, . . . , Γm and B1, . . . ,Bn be sets
of labeled propositions. If

{Γ1 | . . . | Γm}
tnf−→ {B1 | . . . | Bn}

Then
∀(B1 ∨ . . . ∨ Bn) ` =⇒ ∀(Γ1 ∨ . . . ∨ Γm) `

Proof: The tableau normal form algorithm is a restricted case of
the general satisfiability-preserving free-variable tableau expansion
rules. ♦

2.3. Rules for TaMeD

This section defines constrained tableaus and gives the rules of
TaMeD .

DEFINITION 11. Equations and substitutions For some equa-
tional theory E, an equation modulo E is a pair of terms or of
atomic propositions denoted t =?

E t′. A substitution σ is a E-
solution of t =?

E t′ when σt =E σt′. It is a E-solution of an equation
system C when it is a solution of all the equations in C.
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DEFINITION 12. (Constrained tableau).
A constrained tableau is a pair T [C] such that T is a tableau

and C is a set of equations called constraints.

Using these definitions, TaMeD can be introduced.

DEFINITION 13. Let RE be a class rewrite system and T [C] a
constrained tableau, we write

T [C]
T7→ T ′[C ′]

if the constrained tableau T ′[C ′] can be deduced from the con-
strained tableau T [C] using finitely many applications of the Ex-
tended Narrowing and Extended Branch Closure rules de-
scribed in figure 2. This means there is a derivation of the tableau
T ′[C ′] under the assumptions T [C], i.e. a sequence T1[C1], . . . , Tn[Cn]
such that either n = 0 and T ′[C ′] = T [C] or n > 0, T0[C0] =
T [C], Tn[Cn] = T ′[C ′] and each Ti[Ci] is produced by the applica-
tion of a rule in TaMeD to Ti−1[Ci−1].

The first rule, Extended Branch Closure is a simple ex-
tension of the usual branch closure rule for first-order equational
tableau, where similarly to the equational constrained tableau
method in (Degtyarev and Voronkov, 2001), the E-unification con-
straints are not solved but stored in the constraint part. Although
propositions are labeled with variables, these play no role when
applying the Extended Branch Closure rule. In particular, they
are removed from the constraints part of the tableau. Moreover, we
also have here a major difference between resolution and tableau
methods: the Extended Branch Closure is only binary, whereas
the Extended Resolution rule for ENAR in (Dowek et al., 2003)
needs to be applied to all relevant propositions in order to be
complete.

The Extended Narrowing rule is much the same as the one
proposed for resolution and the narrowing is only applied to atomic
propositions and not directly to terms. As atomic propositions may
of course be rewritten to non-atomic ones, it must be ensured that
they are transformed back in disjunctive normal form.

WhenR is empty the Extended Narrowing rule is never used
and we get a method for equational tableau. When both R and
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Extended Branch Closure

Γ1, P,¬Q | Γ2 | . . . | Γn [C]

Γ2 | . . . | Γn [C ∪ {P ?
=
E

Q}]

Extended Narrowing

Γ1, U | Γ2 | . . . | Γn [C]

B1 | . . . | Bp | Γ2 | . . . | Γn [C ∪ {U|ω
?
=
E

l}]

if l → r ∈ R, U|ω is an atomic proposition and
B1 | . . . | Bp = tnf(Γ1, U [r]ω)

Figure 2. TaMeD rules

E are empty, then we get back a first-order free variable tableau
method.

3. Main theorem

The main result of this paper states the soundness and complete-
ness of the TaMeD method with respect to the sequent calculus
modulo.

THEOREM 1. (Main theorem). Let RE be a class rewrite system
such that −→RE is confluent. For every B and Γ sets of closed
formulas, if C is a E-unifiable set of constraints, then we have the
following implications:

Tab(B ∧ ¬Γ)[∅] T7→
RE
�[C] ⇒ B `RE Γ

where ¬Γ = {¬P |P ∈ Γ}.
If the sequent B `RE Γ has a cut-free proof then there exists a

derivation

Tab(B ∧ ¬Γ)[∅] T7→
RE
�[C]
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The following corollary is deduced from the same hypothesis
when the cut-elimination property holds

Tab(B ∧ ¬Γ)[∅] T7→
RE
�[C] ⇔ B `RE Γ

The proof of the main theorem is detailed in the next sections.
Its main steps are summed up as a scheme below and require the
IC-TaMeD method given in section 4:

K,B,¬Γ `
Lem.5⇐⇒

B,¬Γ `RE
Prop.7⇐⇒
Prop.8

B,¬Γ
IcT
↪→ �

Prop.9⇐⇒
Prop.10

B,¬Γ [∅] T7→ � [C]

− The second one (propositions 7 and 8) states that the IC-
TaMeD method is sound and complete with respect to prov-
ability in the sequent calculus modulo. The completeness proof
requires that the cut rule is eliminable in the sequent calculus
modulo RE .

− The third and last part of the proof (propositions 9 and 10) is
the lifting of the proofs of IC-TaMeD to the TaMeD method.

Finally, this series of small steps show that the tableau tnf(Γ∧
¬∆) can be refuted if and only if the sequent K, Γ ` ∆ is provable
in the sequent calculus.

4. Soundness and completeness of the IC-TaMeD
method

In order to prove the theorem stated in section 3, we first de-
fine an intermediate calculus simply called Intermediate Calculus
for TaMeD (IC-TaMeD ). The allowed rules in this calculus are
described in figure 3 .

Let us define the notion of IC-TaMeD derivation.
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Γ1 | . . . | Γn

(Γ1 | . . . | Γn)[x := t]
Instantiation

Γ1, P | Γ2 | . . . | Γn

Γ1, P
′ | Γ2 | . . . | Γn

Conversion if P =E P ′

Γ1, P | Γ2 | . . . | Γn

B1 | . . . | Bp | Γ2 | . . . | Γn
Reduction

if P
R→ Q and B1 | . . . | Bp = tnf(Γ1, Q)

Γ1, P l1 ,¬P l2 | Γ2 | . . . | Γn

Γ2 | . . . | Γn
Identical Branch Closure

Figure 3. IC-TaMeD

DEFINITION 14. (IC-TaMeD derivation). LetRE be a class rewrite
system and T a tableau, we note:

T IcT
↪→ T ′

if the tableau T ′ can be obtained from T using finitely many ap-
plications of the IC-TaMeD rules described in Fig. 3. This means
there is a sequence T1, . . . , Tn such that either n = 0 and T = T ′ or
n > 0, T = T0, T ′ = Tn and each Ti is produced by the application
of a rule of IC-TaMeD to the tableau Ti−1.

Some remarks about the rules of figure 3 are necessary:

− In the Instantiation rule, the instantiated variable is re-
placed in the label by the free variables of the substituted
term.

− In the Conversion rule, ,labels are kept by the transformed
propositions because of the definition of E-equivalent labeled
propositions (definition 6), thus forbidding in particular to
introduce free variables in Γ′ that were not present in the
labels of Γ.
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− In the Reduction rule, labels are extended by the disjunctive
normal form transformation algorithm.

− In the Identical Branch Closure, eliminated propositions
need not have the same label.

4.1. IC-TaMeD soundness

This sectios concentrates on the specific IC-TaMeD soundness
proof. One main intermediate lemma is needed to prove the cor-
rectness of IC-TaMeD with respect to the sequent calculus modulo
of figure 1.

LEMMA 2. Let (Γ1 | . . . | Γn) be a multiset of fxp-branches . If

(Γ1 | . . . | Γn)
IcT
↪→ �

then
∀(Γ1 ∨ . . . ∨ Γn) `RE

.

Proof: This proof is made by induction on the structure of the

IC-TaMeD derivation T = (Γ1 | . . . | Γn)
IcT
↪→ �.

If the IC-TaMeD derivation is empty, then no rule of IC-TaMeD
can by definition be applied to T . Hence the tableau T has been
emptied by the tnf algorithm ; i.e. we actually have T ⇐⇒ ⊥.

Otherwise the IC-TaMeD derivation Γ1 | . . . | Γn
IcT
↪→ � starts

by producing a new tableau T ′ and there is a shorter derivation of

T ′ IcT
↪→ �. Let T = Γ1 | . . . | Γn be the tableau before application

of the considered IC-TaMeD rule.

− Case Identical Branch Closure:
There is a branch, say Γ1, from T that contains a literal and
its opposite (i.e. Γ1 = B ∧ P1 ∧ ¬P1). Thus we have T ′ =
Γ2 | . . . | Γn and Γ1 ⇐⇒ ⊥.

The following equivalences can be easily deduced:

∀(Γ1 ∨ . . . ∨ Γn) `RE ∀(Γ2 ∨ . . . ∨ Γn)
⇐⇒ ∀((B ∧ ¬P1 ∧ P1) ∨ Γ2 ∨ Γn) `RE ∀(Γ2 ∨ . . . ∨ Γn)
⇐⇒ ∀(⊥ ∨Γ2 ∨ . . . ∨ Γn) `RE ∀(Γ2 ∨ . . . ∨ Γn)
⇐⇒ ∀(Γ2 ∨ . . . ∨ Γn) `RE ∀(Γ2 ∨ . . . ∨ Γn)
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By induction hypothesis T ′ `RE , i.e. ∀(Γ2 ∨ . . . ∨ Γn) `RE ,
hence, with the help of the cut rule ∀Γ1 ∨ Γ2 ∨ . . . ∨ Γn `RE .

− Case Instantiation:
T ′ = (Γ1∨ . . .∨Γn)[x := t] therefore, by induction hypothesis,

∀(Γ1 ∨ . . . ∨ Γn)[x := t] `RE
The result is produced by the following sequent derivation:

∀(Γ1 ∨ . . . ∨ Γn)[x := t] `RE
∀x ∀(Γ1 ∨ . . . ∨ Γn) `RE

∀ − r(Γ1 ∨ . . . ∨ Γn, x, t)

The definition of ∀ ensures ∀(Γ1 ∨ . . . ∨ Γn) `RE .

− Case Reduction:
There is a branch of T , say Γ1, which contains an atomic
proposition P that reduces to Q. Let Γ′

1 = Γ1\{P}, Q and
tnf(Γ′

1) = B1 | . . . | Bp.

The proof will consist of three parts. First, we build the proof
of the sequent:

∀(Γ1 ∨ . . . ∨ Γn) `RE ∀(Γ′
1 ∨ Γ2 ∨ . . . ∨ Γn) (1)

Then, we will prove

∀(Γ1 ∨ . . . ∨ Γn),∀(Γ′
1 ∨ Γ2 ∨ . . . ∨ Γn) `RE (2)

These results will entail the conclusion ∀(Γ1 ∨ . . . ∨ Γn) `RE
by using the cut-rule.

Let us start and prove the sequent (1) in the sequent calculus
modulo of figure 1. As Γ1 =RE Γ′

1, and by definition of the
axiom sequent rule, Γ1 `RE Γ′

1 is provable. Therefore we can
build the following derivation:

Γ1 `RE Γ′
1

axiom

Γ1 `RE Γ′
1 ∨ Γ2

∨ − l
....

Γ1 `RE Γ′
1 ∨ . . . ∨ Γn

∨ − l

Γ2 `RE Γ2
axiom

Γ2 `RE Γ′
1 ∨ . . . ∨ Γn

∨ − r∗
....

Γ1 ∨ Γ2 `RE Γ′
1 ∨ . . . ∨ Γn

∨ − l
(Γ3)....
∨ − l....

Γ1 ∨ . . . ∨ Γn−1 `RE Γ′
1 ∨ Γ2 ∨ . . . ∨ Γn
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And we use it to continue as follows:

above derivation....

....

Γn `RE Γ′
1 ∨ . . . ∨ Γn

Γ1 ∨ . . . ∨ Γn) `RE Γ′
1 ∨ . . . ∨ Γn

∀x (Γ1 ∨ . . . ∨ Γn) `RE Γ′
1 ∨ . . . ∨ Γn....

∀(Γ1 ∨ . . . ∨ Γn) `RE Γ′
1 ∨ . . . ∨ Γn

∀(Γ1 ∨ . . . ∨ Γn) `RE ∀x (Γ′
1 ∨ . . . ∨ Γn)

∀ − r

....

∀(Γ1 ∨ . . . ∨ Γn) `RE ∀(Γ′
1 ∨ . . . ∨ Γn)

∀ − r

Sequent (1) has been obtained, let us now prove sequent (2).
Let K be a set of compatible axioms with RE as in definition
4.
As K is a set of sentences, it can be moved within or out
the scope of universal quantifiers and still keeping equivalent
first-order formulas. In particular:

K ∧ ∀(B1 ∨ . . . ∨ Bp ∨ Γ2 ∨ . . . ∨ Γn)
⇐⇒

∀(K ∧ B1 ∨ . . . ∨ Bp ∨ Γ2 ∨ . . . ∨ Γn)

By induction hypothesis, with T ′ = B1 | . . . | Bp | Γ2 | . . . | Γn,
we have:

∀(B1 ∨ . . . ∨ Bp ∨ Γ2 ∨ . . . ∨ Γn) `RE

i.e., by lemma 5

K,∀(B1 ∨ . . . ∨ Bp ∨ Γ2 ∨ . . . ∨ Γn) `RE (3)

Moreover, we have by tnf:

K, Γ′
1 | K, Γ2 | . . . | K, Γn

tnf−→ K,B1 | . . . | K,Bp | K, Γ2 | . . . | K, Γn

Using the correction of tnf by lemma 1 and the result of
sequent (3) we conclude that:

K,∀(Γ′
1 ∨ Γ2 ∨ . . . ∨ Γn) `
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i.e

∀(Γ′
1 ∨ Γ2 ∨ . . . ∨ Γn) `RE

And by weakening the left side of this sequent, we get the
sequent 2 given above:

∀(Γ1 ∨ . . . ∨ Γn),∀(Γ′
1 ∨ Γ2 ∨ . . . ∨ Γn) `RE

We already proved: ∀(Γ1 ∨ . . .∨Γn) `RE ∀(Γ′
1 ∨Γ2 ∨ . . .∨Γn)

Applying the cut rule of definition 1 to these two premisse
yields the conclusion:

∀(Γ1 ∨ Γ2 ∨ . . . ∨ Γn) `RE

− Case Conversion:
It suffices to follow the same steps as for the first part of
the Reduction rule, as we have the same RE-congruence
between the original and the resulting branches.

♦

PROPOSITION 7. (IC-TaMeD soundness). Let P1, . . . , Pn, Q1, . . . , Qm

be closed formulas. If

tnf(P1 ∧ . . . ∧ Pn ∧ ¬Q1 ∧ . . . ∧ ¬Qm)
IcT
↪→ �

then

P1, . . . , Pn `RE Q1, . . . , Qm

Proof: Let {Γ1 | . . . | Γn} = tnf(P1∧ . . .∧Pn∧¬Q1∧ . . .∧¬Qm).

We have (Γ1 | . . . | Γn)
IcT
↪→ �.

Hence, by using lemma 2: ∀(Γ1∨. . .∨Γn) `RE and by weakening
K,∀(Γ1∨ . . .∨Γn) `RE , where K is a set of compatible axioms with
RE . We have

{K, P1, . . . , Pn,¬Q1, . . .¬Qm}
tnf−→ {(K, Γ1) | . . . | (K, Γn)}

The tableau expansion soundness (lemma 1) entails:

K, P1, . . . , Pn,¬Q1, . . .¬Qm `
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Then we get by proposition 5

P1, . . . , Pn,¬Q1, . . .¬Qm `RE

or, stated in another way

P1, . . . , Pn `RE Q1, . . . , Qm

♦

4.2. IC-TaMeD completeness

DEFINITION 15. (Function symbol transformation ). Let t be a
term (resp. a proposition), f a function symbol of arity n and u
a term whose free variables are among x1, . . . , xn. The individual
transformation of symbol f into u is denoted by (x1, . . . , xn)u/f .
{(x1, . . . , xn)u/f}t denotes its application on a term (resp. a propo-
sition) t and is obtained by replacing in t any subterm of the
form f(v1, . . . , vn), where v1, . . . , vn are arbitrary terms by the term
u[x1 := v1, . . . , xn := vn].

Given a finite set of indexes I, the result of the application of
a transformation of function symbols ρ = {(xi

1, . . . , x
i
n)ui/f i}i∈I

to a term (resp. a proposition) t is defined as the simultaneous
application of the individual symbol transformations on t.

Note that labels are not affected by such transformations.

LEMMA 3. Let T be a tableau and ρ a transformation of function
symbols. The Skolem symbols introduced when putting T in tableau
normal form are assumed to be fresh, i.e. not transformed by ρ.
Then tnf(ρT ) = ρtnf(T ) up to some renaming.

Proof: Let us check that if we have two tableaus T and T ′

such that T tnf−→ T ′, then ρT = ρT ′. Let for example

T = U | Γ,∃x P y1,...,yn

and
T ′ = U | Γ, (P [x := f(y1, . . . , yn)])y1,...,yn

then the set
ρT = ρU | ρΓ,∃x ρP y1,...,yn
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transforms to

ρU | ρΓ, (ρP [x := f(y1, . . . , yn)])y1,...,yn = ρT ′

since f is assumed to be a fresh function symbol.
The complete result follows by induction on the length of the

transformation of T to its tableau form. ♦

LEMMA 4. Let T be a tableau and ρ a transformation of function

symbols not appearing in RE. If tnf(T )
IcT
↪→ � then tnf(ρT )

IcT
↪→ �

and the derivations have the same length.

Proof: Lemma 3 yields that it suffices to prove that ρtnf(T )
IcT
↪→ �.

The proof proceeds by induction on the structure of the derivation

to show more generally that for any fully expanded tableau if T IcT
↪→

� then ρT IcT
↪→ �

− For the Instantiation rule, we have ρ(T [x 7→ t]) = (ρT )[x 7→
ρt].

− For the rules Conversion and Reduction, if B =E Γ then,

ρB =E ρΓ and if B RE→ B′, then ρB RE→ ρB′ as the symbols
transformed by ρ do not appear in RE .

− For the last rule, Identical Branch Closure, the case is
obvious.

♦
A new operator on tableaus (

⊕
) is used in the next proofs and

is defined as follows.

DEFINITION 16. (
⊕

operator). Let T = {Γ1 | . . . | Γn} and
U = {B1 | . . . | Bp}. Then, the

⊕
operator will denote the

following operation:

T
⊕

U =
⋃

1≤i≤n
1≤j≤p

Γi ∪ Bj

LEMMA 5. Let t be a closed term, T a tableau, x a variable not
occurring in T , B a branch with labeled propositions then

T
⊕

tnf(B[x := t])
IcT
↪→ � ⇒ T

⊕
tnf(B)

IcT
↪→ �
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Proof: We proceed by induction on the tnf-ordering following the
structure of our tableau form transformation.

If B is a fxp-branch then tnf(B[x := t]) = B[x := t]. Using the
Instantiation rules, B[x := t] can be derived from B, as x does
not appear free in the rest of the tableau. Hence, if T

⊕
tnf(B[x :=

t])
IcT
↪→ � then T

⊕
tnf(B)

IcT
↪→ �.

Otherwise, there is a proposition P ∈ B which is not a literal.
Let us detail the different possible cases, using the notation B =
B′, P .

− If P = Q1 ∧Q2 then P [x := t] = Q1[x := t] ∧Q2[x := t]. As

tnf(B) = tnf(B′, Q1, Q2)

and

tnf(B[x := t]) = tnf(B′[x := t], Q1[x := t], Q2[x := t])

if T
⊕

tnf(B[x := t])
IcT
↪→ �, then

T
⊕

tnf(B′[x := t], Q1[x := t], Q2[x := t])
IcT
↪→ �

We therefore have by induction hypothesis

T
⊕

tnf(B′, Q1, Q2)
IcT
↪→ �

i.e. T
⊕

tnf(B)
IcT
↪→ �

− If P = ¬ ⊥ then tnf(B) = tnf(B′) and tnf(B[x := t]) =

tnf(B′[x := t]). Thus, if T
⊕

tnf(B[x := t])
IcT
↪→ �, then

T
⊕

tnf(B′[x := t])
IcT
↪→ �

, which implies by induction hypothesis:

T
⊕

tnf(B′)
IcT
↪→ �

i.e. T
⊕

tnf(B)
IcT
↪→ �
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− If P =⊥ then tnf(B) = ∅ = tnf(B[x := t]) Thus, if

T
⊕

tnf(B[x := t])
IcT
↪→ �

then, as tnf(B[x := t]) = ∅,

T IcT
↪→ �

therefore, with definition 16, we obviously get T
⊕

tnf(B)
IcT
↪→

�.

− If P = ¬¬Q then P [x := t] = ¬¬Q[x := t] and

tnf(B) = tnf(B′, Q)

and also

tnf(B[x := t]) = tnf(B′[x := t], Q[x := t])

. Thus, if T
⊕

tnf(B[x := t])
IcT
↪→ �, then

T
⊕

tnf(B′[x := t], Q[x := t])
IcT
↪→ �

Using the induction hypothesis, we get

T
⊕

tnf(B′, Q)
IcT
↪→ �

i.e. T
⊕

tnf(B)
IcT
↪→ �.

− If P = Q1 ∨Q2 then P [x := t] = Q1[x := t] ∨Q2[x := t].

tnf(B) = tnf(B′, Q1) | tnf(B′, Q2)

therefore

tnf(B[x := t]) = tnf(B′[x := t], Q1[x := t]) | tnf(B′[x := t], Q2[x := t])

Thus if T
⊕

tnf(B[x := t])
IcT
↪→ �, then

T
⊕

(tnf(B′[x := t], Q1[x := t]) | tnf(B′[x := t], Q2[x := t]))
IcT
↪→ �
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which can be rewritten as

T
⊕

(tnf(B′, Q1) | tnf(B′, Q2))[x := t]
IcT
↪→ �

and we can obtain, using the induction hypothesis

T
⊕

(tnf(B′, Q1) | tnf(B′, Q2]))
IcT
↪→ �

i.e. T
⊕

tnf(B)
IcT
↪→ �.

− If P = ∀y Q then P [x := t] = ∀y Q[x := t]. There are two
cases, following the value of nγ

y

• If nγ
y = 1, tnf(B) = tnf(B′, Q) and

tnf(B[x := t]) = tnf(B′[x := t], Q[x := t])

Thus, if T
⊕

tnf(B[x := t])
IcT
↪→ �, then

T
⊕

tnf(B′[x := t], Q[x := t])
IcT
↪→ �

Applying the induction hypothesis we get T
⊕

tnf(B′, Q)
IcT
↪→

�, i.e. T
⊕

tnf(B).

• Otherwise, if nγ
y > 1, tnf(B) = tnf(B, Q). Then, in the

same way as before:

tnf(B[x := t]) = tnf(B[x := t], Q[x := t])

Thus, if T
⊕

tnf(B[x := t])
IcT
↪→ �, then

T
⊕

tnf(B[x := t], Q[x := t])
IcT
↪→ �

Applying the induction hypothesis (n has indeed de-

creased by 1) we get T
⊕

tnf(B, Q)
IcT
↪→ �, i.e. T

⊕
tnf(B)

IcT
↪→

�.

− If P = ∃z Q, then P [x := t] = (∃z Q)[x := t] If x does not
appear in the label of P then it is not free in P and the case
is obvious. Otherwise let y1, . . . , yn, x be the label of P and
we therefore have:

tnf(B[x := t]) = tnf(B′[x := t], Q[x := t][z := g(y1, . . . , yn, x)])

main.tex; 27/01/2006; 11:07; p.24



25

where g is a fresh Skolem symbol. By induction hypothesis

T
⊕

tnf(B′[x := t], Q[x := t][z := g(y1, . . . , yn)])
IcT
↪→ �

Let ρ = {(y1, . . . , yn)f(y1, . . . , yn, t)/g}, then by Lemmas 3
and 4, we get:

T
⊕

tnf(B′[x := t], Q[x := t][z := g(y1, . . . , yn)])
IcT
↪→ �

=⇒ρ T
⊕

tnf(B′[x := t], Q[x := t][z := f(y1, . . . , yn, t)])
IcT
↪→ �

⇐⇒ T
⊕

tnf(B′, Q[z := f(y1, . . . , yn, x)])[x := t]
IcT
↪→ �

Then, we have by applying the induction hypothesis to the
last line above.

T
⊕

tnf(B′, Q[z := f(y1, . . . , yn, x)])
IcT
↪→ �

i.e. T
⊕

tnf(B)
IcT
↪→ �.

− The cases ¬(Q1∨Q2) and ¬(Q1 ⇒ Q2) are similar to the case
Q1 ∧ Q2. The cases ¬(Q1 ∧ Q2) and Q1 ⇒ Q2 are similar to
the case Q1∨Q2. The case ¬(∀z Q) is similar to the case ∃z Q
and the case ¬(∃z Q) to ∀z Q.

♦

LEMMA 6. Let B = {P1, . . . , Pn} and Γ = {Q1, . . . , Qn} be two
branches of labeled propositions such that, for every i, Pi −→∗

RE Qi.
If T

⊕
tnf(Γ) ↪→ �, then T

⊕
tnf(B) ↪→ �

Proof: This proof is done by induction on B using tnf-ordering.

First, if P
R→ Q then, for every branch of tnf(B), we can find a

branch of tnf(Γ) from which we can derive the branch from tnf(B)
using the Reduction rule.

Else if P =E Q, then for every branch of tnf(B), we can find a
branch of tnf(Γ) from which we can derive the branch of tnf(B)
using the Conversion rule. Hence, if all the propositions of B are
literals, tnf({B}) = B and we can derive from B all the branches of
tnf(Γ) using the Conversion and Reduction rules. In this case,

the result is direct: as T
⊕

tnf(B)
IcT
↪→Conv.,Red. T

⊕
tnf(Γ)

IcT
↪→ �

if T
⊕

tnf(Γ)
IcT
↪→ � then T

⊕
tnf(B)

IcT
↪→ �.
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Let us recall that if we want to use P −→RE Q, we need the
same labels for P and Q. We will now assume that there is a
non-literal proposition P in B which can be reduced to Q. Let
B = B′, P and Γ = Γ′, Q and let us now detail the different cases.

− If P = R1 ∧ R2, then Q = R′
1 ∧ R′

2, R1 −→RE R′
1, R2 −→RE

R′
2. We have: tnf({B}) = tnf({B′, R1, R2}) and tnf({Γ}) =

tnf({Γ′, R′
1, R

′
2}). Thus, if

T
⊕

tnf({Γ′, R′
1, R

′
2})

IcT
↪→ �

then by induction hypothesis

T
⊕

tnf({B′, R1, R2})
IcT
↪→ �

i.e. T
⊕

tnf({B}) IcT
↪→ �.

− If P =⊥, then Q =⊥. Furthermore, tnf({B}) = tnf({Γ}) = ∅.

Hence if

T
⊕

tnf({Γ}) IcT
↪→ �

then T IcT
↪→ � and therefore T

⊕
tnf({B}).

− If P = ¬ ⊥ then Q¬ ⊥. Hence, tnf({B}) = tnf({B′}) and
tnf({Γ}) = tnf({Γ′}). Thus if

T
⊕

tnf({Γ}) IcT
↪→ �

, then

T
⊕

tnf({Γ′}) IcT
↪→ �

and by induction hypothesis T
⊕

tnf({B′}) IcT
↪→ �. i.e. T

⊕
tnf({B}) IcT

↪→
�.

− If P = ¬¬R then Q = ¬¬R′ and R −→RE R′. Moreover
tnf({B}) = tnf({B′, R}) and tnf({Γ}) = tnf({Γ′, R′}) Hence
if

T
⊕

tnf({Γ}) IcT
↪→ �
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i.e.

T
⊕

tnf({Γ′, R′}) IcT
↪→ �

and by induction hypothesis

T
⊕

tnf({B′, R}) IcT
↪→ �

i.e. T
⊕

tnf({B}) IcT
↪→ �.

− If P = R1∨R2, then Q = R′
1∨R′

2, R1 −→RE R′
1, R2 −→RE R′

2.
We have:

tnf({B}) = tnf({B′, R1}) | tnf({B′, R2})

and

tnf({Γ}) = tnf({Γ′, R′
1}) | tnf({Γ′, R′

2})

.Thus if

T
⊕

tnf({Γ′, R′
1}) | tnf({Γ′, R′

2})
IcT
↪→ �

then by induction hypothesis

T
⊕

(tnf({Γ′, R′
1}) | tnf({B′, R2}))

IcT
↪→ �

and

T
⊕

(tnf({B′, R1}) | tnf({B′, R2}))
IcT
↪→ �

i.e. T
⊕

tnf({B}) IcT
↪→ �.

− If P = ∀y R, then Q = ∀y R′ with R −→RE R′. Moreover R
and R′ have the same labels. We have two cases, depending
on the value of ny.

• If ny = 1, then tnf({B}) = tnf({B′, R}) and also tnf({Γ}) =
tnf({Γ′, R′}). In this case

tnf({Γ}) IcT
↪→ �

rewritten as

tnf({Γ′, R′}) IcT
↪→ �
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then by induction hypothesis

tnf({B′, R}) IcT
↪→ �

i.e tnf({B}) IcT
↪→ �.

• If ny > 1 then tnf({B}) = tnf({B, R}) and also tnf({Γ}) =
tnf({Γ, R′}). In this case

tnf({Γ}) IcT
↪→ �

i.e.

tnf({Γ, R′}) IcT
↪→ �

and by induction hypothesis (n has decreased)

tnf({B, R}) IcT
↪→ �

i.e. tnf({B}) IcT
↪→ �.

− If P = ∃z R, then Q = ∃z R′ and R −→RE R′. Let y1, . . . , yn

be the common label of P and Q. The two refutations are
independent so we choose the same Skolem symbol without
loss of generality. We have

tnf({B}) = tnf({B′, R[x := f(y1, . . . , yn)]})

and

tnf({Γ}) = tnf({Γ′, R′[x := f(y1, . . . , yn)]})

. Hence if

T
⊕

tnf({Γ}) IcT
↪→ �

i.e.

T
⊕

tnf({Γ′, R′[x := f(y1, . . . , yn)]}) IcT
↪→ �

then by induction hypothesis

T
⊕

tnf({B′, R[x := f(y1, . . . , yn)]}) IcT
↪→ �

i.e. T
⊕

tnf({B}).
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− The cases ¬(R1 ∨ R2) and ¬(R1 ⇒ R2) are treated like the
case R1 ∧R2. The cases ¬(R1 ∧R2) and R1 ⇒ R2 are similar
to the case R1 ∨ R2. Finally, the case ¬(∀z R) is similar to
the case ∃z R and the case ¬(∃y R) similar to ∀y R.

♦

LEMMA 7. Let R, S be closed formulas and Γ, ∆ branches of
closed formulas. If

tnf(R, Γ,¬∆)
IcT
↪→ � and tnf(S, Γ,¬∆)

IcT
↪→ �

Then we can build a derivation of:

tnf(R ∨ S, Γ,¬∆)
IcT
↪→ �

Proof: A tableau is closed (here
IcT
↪→ �) if every branch of this

tableau is closed (also
IcT
↪→ �). We know that tnf(R ∨ S, Γ,¬∆) =

tnf((R, Γ,¬∆)|(S, Γ,¬∆)) from definition 7 and from lemma 1,
that this calculus is sound. Moreover,

tnf(R, Γ,¬∆) | tnf(S, Γ,¬∆)) = tnf((R, Γ,¬∆)|(S, Γ,¬∆))

.
Hence, if

tnf(R, Γ,¬∆)
IcT
↪→ �

and

tnf(S, Γ,¬∆)
IcT
↪→ �

then, providing that all formulas are closed.

tnf(R, Γ,¬∆) | tnf(S, Γ,¬∆)) = tnf((R, Γ,¬∆) | (S, Γ,¬∆))
IcT
↪→ �

and finally

tnf(R ∨ S, Γ,¬∆)
IcT
↪→ �

♦
The following lemma allows the restriction of the use of the con-

gruence to reductions in proofs and comes directily from (Dowek
et al., 2003).
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LEMMA 8. If the relation −→RE is confluent, we have:

− If P and Q ∧ R are sentences such that P =RE Q ∧ R,
then there exists a sentence Q′ ∧ R′ such that P −→∗

RE Q′ ∧
R′, Q =RE Q′ and P =RE P ′.

− If P and Q ∨ R are sentences such that P =RE Q ∨ R,
then there exists a sentence Q′ ∨ R′ such that P −→∗

RE Q′ ∨
R′, Q =RE Q′ and P =RE P ′.

− If P and Q ⇒ R are sentences such that P =RE Q ⇒ R,
then there exists a sentence Q′ ⇒ R′ such that P −→∗

RE Q′ ⇒
R′, Q =RE Q′ and P =RE P ′.

− If P and ¬Q are sentences such that P =RE ¬Q, then there
exists a sentence ¬Q′ such that P −→∗

RE ¬Q′and Q =RE Q′ .

− If P is a sentence such that P =RE⊥, alors P −→∗
RE⊥.

− If P and ∀xQ are sentences such that P =RE ∀xQ, then
there exists a sentence ∀xQ′ such that P −→∗

RE ∀xQ′and
Q =RE Q′ .

− If P and ∃xQ are sentences such that P =RE ∃xQ, then
there exists a sentence ∃xQ′ such that P −→∗

RE ∃xQ′ and
Q =RE Q′ .

Proof: See (Dowek et al., 2003). ♦

PROPOSITION 8. (IC-TaMeD completeness). Let −→∗
RE be a con-

fluent relation and P1, . . . , Pn, Q1, . . . , Qm be closed formulas. If
the sequent:

P1, . . . , Pn `RE Q1, . . . , Qm

has a cut-free proof then:

tnf(P1, . . . , Pn,¬Q1, . . . ,¬Qm)
IcT
↪→ �

Proof: By induction on the size of a closed cut-free proof of:

P1, . . . , Pn `RE Q1, . . . , Qm
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− If the last rule is the axiom rule, then n = m = 1 and
P1 =RE Q1. By confluence, there exist sentences R and R’
such that P1 −→∗

RE R,Q1 −→∗
RE R′ and R =RE R′. By induc-

tion on the structure of R and using the rules Conversion,
Instantiation, and Identical Branch Closure , we prove

tnf(R,¬R′)
IcT
↪→ � and by lemma 6 we get:

tnf(P1,¬Q1)
IcT
↪→ �

− If the last rule is contr − l or contr − r, then the tnf of the
antecedent and succedent are the same, thus we simply apply
the induction hypothesis.

− If the last rule is weak − l or weak − r, then the tnf of the
antecedent is a subset of the tnf of the succedent, thus we
simply apply the induction hypothesis. In the case of weak− l
(resp. weak−r) and the duplication of a universally quantified
formula (resp. existentally quantified), it is needed to allow
one more γ-expansion, therefore n is increased.

− If the last rule is ∧-l, then of the Pi (say P1) is RE-equivalent
to a conjunction R ∧ S. By lemma 8 P1 −→∗

RE R′ ∧ S ′ with
R =RE R′, S =RE S ′. By induction hypothesis and proposition
2:

tnf(R′, S ′, P2, . . . , Pn,¬Q1, . . . ,¬Qm)
IcT
↪→ �

and

tnf(R′ ∧ S ′, P2, . . . , Pn,¬Q1, . . . ,¬Qm)
IcT
↪→ �

With lemma 6

tnf(P1, P2, . . . , Pn,¬Q1, . . . ,¬Qm)
IcT
↪→ �

− If the last rule is ¬− l, one of the Pi (say P1) is RE-equivalent
to a negation ¬R. By lemma 8 P −→∗

RE ¬R′ and R′ =RE R.
By induction hypothesis and proposition 2:

tnf(¬R′, P2, . . . , Pn,¬Q1, . . . ,¬Qm)
IcT
↪→ �

i.e. with lemma 6

tnf(P1, P2, . . . , Pn,¬Q1, . . . ,¬Qm)
IcT
↪→ �
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− If the last rule is ⊥ −l, one of the Pi (say P1) is RE-equivalent
to ⊥. By lemma 8 P −→∗

RE⊥.

tnf(⊥, P2, . . . , Pn,¬Q1, . . . ,¬Qm)
IcT
↪→ �

With lemma 6

tnf(P1, P2, . . . , Pn,¬Q1, . . . ,¬Qm)
IcT
↪→ �

− If the last rule is ∨-l, one Pi (say P1) is RE-equivalent to a
disjunction R ∨ S. By lemma 8 P −→∗

RE R′ ∨ S ′ and R′ =RE
R,S ′ =RE S. By induction hypothesis and proposition 2:

tnf(R′, P2, . . . , Pn,¬Q1, . . . ,¬Qm)
IcT
↪→ �

and

tnf(S ′, P2, . . . , Pn,¬Q1, . . . ,¬Qm)
IcT
↪→ �

Lemma 7 can be used as instantiation of universally quanti-
fied variables are not delayed in the sequent calculus modulo.
Therefore rigid free variables do not appear in the branches
by this β-expansion step.

tnf(R′ ∨ S ′, P2, . . . , Pn,¬Q1, . . . ,¬Qm)
IcT
↪→ �

And with lemma 6

tnf(P1, P2, . . . , Pn,¬Q1, . . . ,¬Qm)
IcT
↪→ �

− If the last rule is ∀− l, one of the Pi (say P1) is RE-equivalent
to a universal proposition ∀R. By lemma 8 P −→∗

RE ∀R′ and
R′ =RE R. By induction hypothesis and proposition 2:

tnf(R′[x := t], P2, . . . , Pn,¬Q1, . . . ,¬Qm)
IcT
↪→ �

for a given term t . Labels of P1,∀x R′, R′[x := t] are empty
and the one of R′ is x (which is a fresh variable). i.e.

T = tnf(P2, . . . , Pn,¬Q1, . . . ,¬Qm)

By lemma 5, T
⊕

tnf(R′)
IcT
↪→ � i.e. T

⊕
tnf(∀x R′)

IcT
↪→ � and

by lemma 6

tnf(P1, P2, . . . , Pn,¬Q1, . . . ,¬Qm)
IcT
↪→ �
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− If the last rule is ∃− l, one of the Pi (say P1) is RE-equivalent
to an existential proposition ∃R. By lemma 8 P −→∗

RE ∃R′

and R′ =RE R. By induction hypothesis and proposition 2:

tnf(R′[x := c], P2, . . . , Pn,¬Q1, . . . ,¬Qm)
IcT
↪→ �

where c is a new constant, i.e.

tnf(∃x R′, P2, . . . , Pn,¬Q1, . . . ,¬Qm)
IcT
↪→ �

By lemma 6

tnf(P1, P2, . . . , Pn,¬Q1, . . . ,¬Qm)
IcT
↪→ �

− If the last rule is ∧ − r or ⇒ −l, the proof is like the one of
∨ − l. If the last rule is ∨ − r or ⇒ −r, the proof is the one
of ∧− l. If the last rule is ¬− r then the proof is like the one
of ¬ − l

♦

5. Soundness and completeness of the TaMeD method

The soundness and completeness results obtained for IC-TaMeD
will be lifted to TaMeD in the following subsections. Interactions
between tableau forms and substitutions are handled by special
lemmas in both cases.

5.1. TaMeD soundness

Proving the soundnes of TaMeD relies on one intermediate lemma.

LEMMA 9. Let B be a branch of labeled propositions and Θ a
closed substitution such that free variables introduce by putting B
in tnf do not appear in Θ. Then, there exists a transformation ρ
of the function symbols introduced by putting B in tableau normal
form such that tnf(ΘB) = ρΘtnf(B).

Proof: This proof is done by induction on B with the tnf-ordering.
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If all the propositions of B are literals then

tnf(ΘB) = ΘB = Θtnf(B)

In this case we only have to take the identity for ρ. Otherwise there
is a proposition P in B that is not a literal. Let B = B′ ∪ {P}.

− If P = Q1 ∧Q2 then by induction hypothesis

tnf({ΘB′, ΘQ1, ΘQ2}) = ρΘtnf({B′, Q1, Q2})

i.e.
tnf(ΘB) = ρΘtnf(B)

− If P =⊥ then we have tnf(ΘB) = ∅ = tnf(B). Thus, ρ is the
identity.

− If P = ¬ ⊥ then by induction hypothesis

tnf(ΘB′) = ρΘtnf(B′)

i.e.
tnf(ΘB) = ρΘtnf(B)

− If P = ¬¬Q then by induction hypothesis, we have

tnf(Θ(B′, Q)) = ρΘtnf(B′, Q)

i.e.
tnf(ΘB) = ρΘtnf(B)

− If P = Q1 ∨Q2 then by induction hypothesis

tnf({ΘB′, ΘQ1}) = ρΘtnf({B′, Q1})

and
tnf({ΘB′, ΘQ2}) = ρ′Θtnf({B′, Q2})

Since the domains of ρ and ρ′ are disjoint (Skolem symbols
are assumed to be fresh):

tnf(ΘB) = tnf(ΘB′, ΘQ1)|tnf(ΘB′, ΘQ2)
= (ρρ′)Θ(tnf(B′, Q1)|tnf(B′, Q2))
= (ρρ′)Θtnf(B)
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− If P = ∀x Q, two cases arise:

• If nx = 1 then as x is not in the domain of Θ and
tnf(ΘB) = tnf(ΘB′, ΘQ) = ρΘtnf(B′, Q) = ρΘtnf(B)

• Otherwise,nx > 1. x is still not in the domain of Θ
and tnf(ΘB) = tnf(ΘB, ΘQ). We obtain the result by
using the induction hypothesis in addition to the prece-
dent equality tnf(ΘB) = tnf(ΘB, ΘQ) = ρΘtnf(B, Q) =
ρΘtnf(B) (recalling that tnf(B) = tnf(B, Q)).

− If P = ∃x Q then let y1, . . . , yp be the variables in the label of
P that are in the domain of Θ and z1, . . . , zq the others. The
label of P is thus y1, . . . , yp, z1, . . . , zq and the label of ΘP is
z1, . . . , zq because Θ is closed.

We have

tnf(B) = tnf(B′, Q[x := g(y1, . . . , yp, z1, . . . , zq)]

tnf(ΘB) = tnf(ΘB′, (ΘQ)[x := f(z1, . . . , zq)]

Moreover

Θ(Q[x := g(y1, ..., yp, z1, ..., zq)]) = ΘQ[x := g(Θy1, ..., Θyp, z1, ..., zq)]

If we take ρ = {(y1, . . . , yp, z1, . . . , zq)f(z1, . . . , zq)/g} we get

ρΘQ[x := g(y1, . . . , yp, z1, . . . , zq)] =
(ΘQ)[x := f(z1, . . . , zq)] =
Θ(Q[x := f(z1, . . . , zq)])

Thus

ρΘ(B′, Q[x := g(y1, ..., yp, z1, . . . , zq)]) = Θ(B′, Q[x := f(z1, ..., zq)])

Hence

tnf(ΘB) =
tnf(Θ(B′, Q[x := g(y1, . . . , yp, z1, . . . , zq)])) =
tnf(ρΘ(B′, Q[x := g(y1, . . . , yp, z1, . . . , zq)]))

By lemma 3

tnf(ΘB) = ρtnf(Θ(B′, Q[x := g(y1, . . . , yp, z1, . . . , zq)]))
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And by induction hypothesis

tnf(Θ(B′, Q[x := g(y1, . . . , yp, z1, . . . , zq)])) =
ρ0Θtnf(B′, Q[x := g(y1, . . . , yp, z1, . . . , zq)]) =
ρ0Θtnf(B)

Hence tnf(ΘB) = ρρ0Θtnf(B).

♦

LEMMA 10. Let T be a tableau composed of globally constrained
branches such that:

T T7→ �[C]

and Θ be a closed substitution, unifier of C, mapping all the vari-
ables of C to a closed term. Then

ΘT IcT
↪→ �

Proof: This proof is done by induction on the structure of the

derivation T T7→ �[C]. For the rest of the proof, let T = {B1 | . . . | Bn}.
If the derivation is empty, T has been emptied by the tnf

algorithm and obviously ΘT IcT
↪→ �.

Otherwise, the derivation starts by producing a tableau T ′ from
T and T ′ has a smaller derivation. Furthermore we have by induc-

tion hypothesis ΘT ′ IcT
↪→ �. We look at the rule used to produce

T ′.

− Case Extended Branch Closure:
There is a branch, say B1 of T that contains two propositions
P and ¬Q such that P =E Q. Since all constraints of T are
constraints of T ′, they are unified by Θ. ΘT ′ can be produced
from ΘT by the rules Conversion and Identical Branch

Closure. By induction hypothesis ΘT ′ IcT
↪→ �, and ΘT IcT

↪→
ΘT ′, thus we get ΘT IcT

↪→ �.

− Case Extended Narrowing:
There is a branch of T , let us call it Γ , that can be rewritten
to Γ′ and U = tnf(Γ′) = B1 | . . . | Bp such that T ′ =
B1 | . . . | Bp | Γ2 | . . . | Γn. Let also ω be the occurrence
of Γ where the Extended Narrowing is applied such that
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Γ′ = Γ[r]ω). Therefore Θ(Γ[l]ω) →R ΘΓ′.
T ′ is constrained by Γ|ω =?

E l, hence ΘΓ|ω =E Θl, ΘΓ =E
Θ(Γ[l]ω). As Θl is closed, we can put the same label on these
propositions and further derive ΘΓ[l]ω from ΘΓ by using the
rule Conversion.
Now, let Θ1 be the restriction of Θ to the free variables pro-
duced by the variables bound in Γ′ and Θ2 its restriction to
the other variables.
By lemma 9, there is a transformation ρ of the function sym-
bols introduced by putting Γ′ in tnf such that tnf(Θ2Γ

′) =
ρΘ2U . Hence, tnf(ΘΓ′) = ρtnf(Θ2Θ1Γ

′) = ρΘ2U as Θ1 only
applies to variables freed in U
Moreover Θ1tnf(U) = Θ1ρΘ2U = ρΘU as Θρ = ρΘ. The
set of branches ρΘU can be derived from ΘΓ[Θl]ω with the
Reduction rule and the Instantiation rule.

We have ΘT ′ IcT
↪→ �, hence by lemma 4:

ρΘT ′ IcT
↪→ �

We produce the following IC-TaMeD derivation from ΘT

ΘT = ΘΓ1 | . . . | ΘΓn
IcT
↪→Conversion ΘΓ1[Θl]|ω | . . . | ΘΓn
IcT
↪→Reduction tnf(ΘΓ1[Θr]|ω | . . . | ΘΓn)
= ρΘtnf(Γ1[r]|ω | . . . | ΘΓn)

= ρΘB1 | . . . | ρΘBp|ρΘΓ2 | . . . | ρΘΓn
IcT
↪→ �

Therefore ΘT IcT
↪→ �

♦

PROPOSITION 9. (TaMeD soundness). Let T be a non-constrained
tableau such that

T T7→ �[C]

where C is a unifiable set of constraints. Then T IcT
↪→ �.

Proof: The set of constraints C is unifiable and thus it has a

unifier Θ mapping all variables of C. By lemma 10 ΘT IcT
↪→ �. All
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the branches of ΘT can be derived from those of T itself with the

Instantiation rules. Hence T IcT
↪→ �. ♦

Since IC-TaMeD is sound, the previous proposition entails im-
mediately TaMeD soundness.

5.2. TaMeD completeness

The completeness result will now be lifted from IC-TaMeD to
TaMeD in a way similar to the lifting of the soundness proof.
A lemma similar to lemma 10 is also needed.

LEMMA 11. Let B and Γ be two branches of labeled propositions.
Let Θ be a substitution such that no variable bound in B is in the
domain of Θ. Suppose that ΘB =E Γ. Then there is a transfor-
mation ρ of function symbols introduced by putting Γ in tableau
normal form such that ΘtnfB) =E ρtnfΓ)

Proof: The proof is done by induction on B using tnf-ordering.
If all the propositions are literals then

ΘtnfB) = ΘB =E Γ = tnfΓ)

We only have to take the identity for ρ. Otherwise, there is a
proposition P which is not a literal. Let B = {B′, P} and Γ =
{Γ, P ′} with ΘB′ =E Γ′ and ΘP =E P ′.

− If P = Q1∧Q2, then P ′ = Q′
1∧Q′

2 and ΘQ1 = Q′
1, ΘQ2 = Q′

2.

By induction hypothesis

ΘtnfB′, Q1, Q2) =E ρtnfΓ′, Q′
1, Q

′
2)

i.e. ΘtnfB′) =E tnfΓ′).

− If P =⊥ then P ′ =⊥. We have ΘtnfB) = ∅ = ΘtnfΓ). We
take the identity for ρ.

− If P = ¬ ⊥ then P ′ = ¬ ⊥.

By induction hypothesis

ΘtnfB′) =E ρtab; (Γ′)

i.e. ΘtnfB) =E ρtnfΓ).
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− If P = ¬¬Q then P ′ = ¬¬Q′ and ΘQ =E Q′.

By induction hypothesis

ΘtnfB′, Q) =E ρtnfΓ′, Q′)

i.e. tnfB) =E ρtnfΓ).

− If P = Q1∨Q2 then P ′ = Q′
1∨Q′

2 and ΘQ1 = Q′
1, ΘQ2 = Q′

2.

By induction hypothesis

ΘtnfB′, Q1) =E ρtnfΓ′, Q′
1)

and
ΘtnfB′, Q2) =E ρ′tnfΓ′, Q′

2)

Since the domains of ρ and ρ′ are disjoint:

ΘtnfB) = ΘtnfB′, Q1)|ΘtnfB′, Q2)
=E ρtnfΓ′, Q′

1)|ρ′tnfΓ′, Q′
2)

= (ρ ∪ ρ′)tnfΓ)

− If P = ∃xQ then P ′ = ∃xQ′ and ΘQ =E Q′. Let y1, . . . , yn be
the label of P and z1, . . . , zq be the free variables in Θy1, . . . , Θyn.
The label of ΘP and P ′ is z1, . . . , zq.

We have tnfB) = tnfB, Q[x := f(y1, . . . , yn)] and tnfΓ) =
tnfΓ′, Q′[x := g(z1, . . . , zq)]).

As ΘQ =E Q′,

Θ(Q[x := f(y1, . . . , yn)]) = (ΘQ)[x := f(Θy1, . . . , Θyn)]
=E Q′[x := f(Θy1, . . . , Θyn)]
= ρQ′[x := g(z1, . . . , zq)]

where ρ = {(z1, . . . , zq)f(Θy1, . . . , Θyn)/g}. Thus

Θ(B′, Q[x := f(y1, . . . , yn)]) =E ρ(Γ′, Q′[x := g(z1, . . . , zq)])

and by induction hypothesis

ΘtnfB′, Q[x := f(y1, . . . , yn)]) =E ρ′tnfρ(Γ′, Q′[x := g(z1, . . . , zq))])

and by lemma 3

ΘtnfB′, Q[x := f(y1, . . . , yn)]) =E ρ′ρtnfΓ′, Q′[x := g(z1, . . . , zq)])

i.e. ΘtnfB) =E ρ′ρtnfΓ)
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− If P = ∀xQ then P ′ = ∀xQ′ and ΘQ =E Q′. We proceed by
case on the integer nx for the considered universally quantified
formula.

• If nx = 1 then

ΘtnfB′, Q) =E ρtnfΓ′, Q′)

i.e. ΘtnfB) =E ρtnfΓ).

• If nx > 1 then, as ΘB′ =E Γ′, ΘP =E P ′ and ΘQ =E Q′

Θtab(B, Q) =E ρtnfΓ, Q)

− The cases ¬(Q1 ∨ Q2) and ¬(Q1 ⇒ Q2) are treated like the
case Q1 ∧Q2. The cases ¬(Q1 ∧Q2) and Q1 ⇒ Q2 are similar
to the case Q1 ∨Q2. The case ¬(∀z; Q) is similar to the case
∃z; Q and the case ¬(∃z; Q) to ∀z; Q.

♦

PROPOSITION 10. (TaMeD completeness). Let U be a constrained
tableau, Θ be a E-unifier of the constraints of U , and T a non-
constrained tableau such that

ΘU =E T

and

T IcT
↪→ �

then
U T7→ �[C]

where C is a unifiable set of constraints .

Proof: This proof is done by induction on the structure of the IC-
TaMeD proof of T . For the rest of the proof, let also T = B1| . . . |Bn

and U = Γ1| . . . |Γp.
If the IC-TaMeD derivation is empty, then T is formed of only

closed branches and therefore U T7→ � where C is a set on con-
straints and Θ a E-unifier of C.

Otherwise the derivation starts by producing a tableau T ′ from
T using the IC-TaMeD rules and T ′ has a smaller derivation to
the closed form. We detail the four different rules which can be
used to produce T ′
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− Case Instantiation:
Let T ′ = T [x 7→ t]. By hypothesis, ΘU =E T . We now have:

(ΘU)[x 7→ t] =E T [x 7→ t] = T ′

Let Θ′ = [x 7→ t]Θ̇, we get Θ′U =E T ′ and Θ′ is a unifier of
the constraints of the tableau U .

As T ′ IcT
↪→ � and Θ′U =E T ′, then we get by induction hy-

pothesis U
T7→ �.

− Case Conversion:
The case is obvious as:

ΘU =E T =E T ′

The induction hypothesis is used on ΘU =E T ′ and T ′ IcT
↪→ �

to yield U
T7→ �.

− Case Identical Branch Closure:
T has a branch, say B1, containing a literal P and its negation¬P .
ΘU =E T therefore there is a branch,say Γ1, in U containing
two literals P ′ and ¬Q′ such that ΘP ′ =E P =E ΘQ′.
Let U ′ = U\{Γ1} then obviously ΘU ′ = T ′. By induction

hypothesis T ′ IcT
↪→ � therefore U ′ T7→ �[C] and Θ is a unifier of

C.
Applying Extended Branch Closure to P ′ and ¬Q′ in U
exactly yields the constrained tableau U ′. Hence, U T7→EBC

U ′ T7→ � · [C]

− If the rule is Reduction, then there is in T a branch, say
B1 = (B, P ), containing a literal P such that P →R Q and
Γ′

1 | . . . | Γ′
p = tnfB, Q). Moreover, there is a constrained

tableau U [C1] containing a branch, say Γ1 = (Γ, P ′) such that
ΘΓ =E B and ΘP ′ =E P .

As ΘP ′ =E P , P →R Q and R applies only to atomic propo-
sitions and P ′ is a literal, we have ΘP ′ →RE Q. Hence, the
proposition ΘP ′ contains an occurrence ω such that ΘP ′

|ω =E

σl and ΘP ′[σr]ω = Q for some substitution σ and rule l → r.
We also have (ΘP ′)|ω = Θ(P ′

|ω). Let Q′ = P ′[r]|ω, C ′ =
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C1 ∪ {P ′
|ω =?

E l} and Θ′ = Θ ∪ σ. As the domain of the

substitution σ contains only fresh variables, Θ′ is a unifier
of C ′, Θ′Γ = ΘΓ =E B and

Θ′Q′ = Θ′(P ′[r]ω) = Θ′(P ′)[Θ′r]ω = ΘP ′[σr]ω = Q

Θ′(Γ, Q′) =E B, Q and, since the substitution σ only affects
the {Γ, Q′} branch:

Θ′(Γ, Q′|Γ2 | . . . | Γp) =E (B, Q|B2 | . . . | Bn)

. Let U ′ = tnfΓ, Q′|Γ2| . . . |Γp). By lemma 11 there is a trans-
formation of function symbols such that

Θ′U ′ =E ρtnfB, Q|B2| . . . |Bn) = ρT ′

.

As T ′ IcT
↪→ �, ρT ′ IcT

↪→ � by lemma 4 and the derivation have the
same length. Hence, the induction hypothesis can be applied

on ΘU ′ and ρT yielding U ′[C ′]
T7→ �[C] where C is a unifiable

set of constraints.
The Extended Narrowing rule applied to U (precisely to

its branch B1) leads to U ′ in several steps. Hence, U T7→ExtN

U ′ T7→ �[C] where C is a unifiable set of constraints.

♦

6. Conclusion

After introducing the sequent calculus modulo of (Dowek et al.,
2003), we have presented a tableau-based proof search method for
deduction modulo. Furthermore we have shown that TaMeD is
indeed sound and complete with respect to this sequent calculus
modulo. TaMeD is built as a simple extension of the usual first-
order free-variable tableau method.

The integration of rewrite rules dedicated to computational
operations in sequent rules dedicated to deduction permits to un-
derline the essential steps of a given proofs: those where deduc-
tion, non-deterministic search, had to be used. Moreover powerful
and expressive theories have been expressed as deduction modulo.
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Small congruences can be defined such as in the propositional
rewriting example given in the introduction. However arithmetic
in (Dowek and Werner, 2005) or, more significantly, higher-order
logic (both extensional and intentional) in (Dowek et al., 1999)
have been expressed as deduction modulo. The latter work gives
in particular a presentation of intentional classical higher-order
logic as a first-order logic modulo. This work together with this
paper yields almost for free a framework for a higher-order tableau
method, which would be rather different from the extensional
higher-order tableau method described in (Kohlhase, 1998).

We have also tried to underline the differences with the ENAR
method, which principally come from the fact that free variables
introduced by our tnf-calculus can not be locally dealt with and
therefore have to be present globally. This might be a drawback
when compared to resolution. However, the tableau closure rule of
TaMeD allows binary closure which ENAR does not.

All in all, the calculus presented here is quite basic and separate
the process into two steps: tnf and TaMeD . Yet, one could want
to introduce some restrictions or extensions. What easily comes to
mind would be to allow non-literal branch closure, which would
ensure faster closure in many cases (that should not change the
soundness and completeness of the method). Furthermore, the
skolemization process defined through the use labels could also
be refined perhaps by using the framework of (Cantone and As-
mundo, 2005), thus improving the whole method. Finally, allowing
non-atomic propositional rewrite rules in specific cases seems pos-
sible as in (Deplagne, 2002) where first-order classical sequents are
presented as a theory modulo.

Strong assumptions have been made in our proofs, for example
when relying on the confluence property of the considered RE
rewrite system and cut elimination in the sequent calculus modulo,
which could possibly be relaxed using for example the work of
(Hermant, 2005).

The method used to solve the constraints has also been omitted.
Unification-related problems are indeed not the topic of this paper.
It is however expected that the rigidity of free variables introduced
by the tableau method will once again be a major problem when
dealing at least with equational theories (see for example (Beck-
ert, 1998)), since rigid E-unification has been proved undecidable
(Degtyarev and Voronkov, 1998).
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Further research could eventually be made to get a model-based
completeness proof for TaMeD as is done in (Stuber, 2001) for
the resolution-based ENAR. However, the next major step should
primarily be to implement TaMeD on top of a first-order tableau
prover.
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Gabbay, R. Hähnle, and J. Posegga (eds.): Handbook of Tableau Methods.
Dordrecht: Kluwer Academic Publishers.

Smullyan, R.: 1968, First Order Logic. Springer.
Stuber, J.: 2001, ‘A Model-Based Completeness Proof of Extended Narrowing

and Resolution’. Lecture Notes in Computer Science 2083, 195+.

main.tex; 27/01/2006; 11:07; p.45


