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Abstract. We present Zenon, an automated theorem prover for first or-
der classical logic (with equality), based on the tableau method. Zenon is
intended to be the dedicated prover of the Focal environment, an object-
oriented algebraic specification and proof system, which is able to pro-
duce OCaml code for execution and Coq code for certification. Zenon can
directly generate Coq proofs (proof scripts or proof terms), which can be
reinserted in the Coq specifications produced by Focal. Zenon can also be
extended, which makes specific (and possibly local) automation possible
in Focal.

1 Introduction

Theorem proving is generally separated into two distinct domains: automated
theorem proving and interactive theorem proving. Even if these two domains are
obviously connected, it seems that in practice, they have little interaction. Actu-
ally, the motivations are quite different: automated theorem proving focuses on
heuristic concerns (complexity, efficiency, ...) to solve well-identified problems,
whereas interactive theorem proving is more concerned with providing means (es-
sentially tools) to achieve proofs of theorems. As a consequence, in automated
theorem proving, it is quite difficult to produce formal proofs and in general, the
corresponding tools only generate proof traces, which can be seen as abstractions
of formal proofs and cannot be directly translated into machine checkable proofs.
In this way, we can understand how complicated it is to integrate automated the-
orem proving features into interactive theorem provers, which tend to suffer from
a certain lack of automation. Over the past ten years, some experiments have
aimed to make these two kinds of theorem proving activities interact, such as
between Gandalf and HOL by J. Hurd [5], between Otter and ACL2 by W. Mc-
Cune and O. Shumsky [8], between Bliksem and Coq by M. Bezem, D. Hendriks
and H. de Nivelle [2], or more recently between E, SPASS, Vampire and Isabelle
by L. C. Paulson and K. W. Susanto [9]. However, these examples of integration
are not fully satisfactory, since the design of the corresponding automated the-
orem provers is clearly separated from the automation that could be required



by the respective interactive theorem provers. In particular, it is impossible to
extend the automated theorem prover to manage a very specific and local need
for automation.

In this paper, we present Zenon, an automated theorem prover for first or-
der classical logic (with equality), based on the tableau method. Zenon is not
supposed to be only another general-purpose automated theorem prover, but is
designed to be the reasoning support mechanism of the Focal [15] environment,
initially conceived by T. Hardin and R. Rioboo. Focal is a language in which
it is possible to build applications step by step, going from abstract specifica-
tions to concrete implementations. These different structures are combined using
inheritance and parameterization, inspired by object-oriented programming; in
addition, each of these structures is equipped with a carrier set, providing a
typical algebraic specification flavor. Moreover, in this language, there is a clean
separation between the activities of programming and proving. In particular,
the compiler is able to produce OCaml [14] code for execution and Coq [13] code
for certification. In this compilation scheme, Zenon is involved in the certifica-
tion part, between the specification level and the generated Coq implementation.
Zenon is intended to be the prover of Focal, whereas Coq is used only as a proof
checker to ensure the soundness of the final output.

Beyond the automation itself, Zenon brings an effective help to the design
of Focal. First, Zenon uses the tableau method. Even though, these days, this
method is generally considered as not very efficient (compared to resolution, for
example), it has the advantage of being very appropriate for building formal
proofs. In this way, Zenon has a low-level format of proofs, which is very close
to a sequent calculus. From this low-level format, Zenon can directly produce
proofs for Coq (it could be easily done for other proof assistants). This feature
can be seen as a guarantee of soundness for the implementation of Zenon, but it
is also essential to Focal, where the Coq proofs produced by Zenon are reinserted
in the Coq specifications generated by the Focal compiler and fully verified by
Coq. In addition, Zenon is also able to produce proof terms for Coq (using its
Curry-Howard isomorphism capability), so that Zenon verifies the De Bruijn
criterion [1], i.e. it generates proof terms that can be checked independently
by a relatively small and easily hand checked algorithm. This means that it is
possible to verify Zenon’s proofs without Coq, using another tool that would
implement only the type-checking of Coq. Second, Zenon can be easily extended
and this is directly related to the use of the tableau method, which is also very
appropriate to handle additional rules. Thanks to this feature, it is possible
to manage specific (and possibly local) needs of automation in Focal, such as
arithmetic, induction, etc.

The paper is organized as follows: in Section 2, we give the rules of the search
method used by Zenon, as well as the format of the generated proofs (in this part,
we also point out some specific implementation techniques, such as the use of
non-destructive rules and pruning, the management of lemmas or the extension
mechanism); in Section 3, we describe the intermediate proof format produced by
translating from the proof search rules; in Section 4, we give the translation from



this intermediate format to Coq proofs; in Section 5, we provide some examples
of use, coming from the TPTP library but also from Focal applications.

2 MLproof

The MLproof inference rules (Figures 1 and 2) are used by Zenon to search for
a proof. These rules are applied with the normal tableau method: starting from
the negation of the goal, apply the rules in top-down fashion to build a tree.
When all branches are closed (i.e. end with an application of a closure rule), the
tree is closed. The closed tree is a proof of the goal.

Note that this algorithm is applied in strict depth-first order: we close the
current branch before starting work on another branch. Moreover, we work in
a non-destructive way: working on one branch will never change the formulas
present in any other branch.

We divide these rules into five distinct classes to be used for a more efficient
proof search. This extends the usual sets of rules dealing with α, β, δ, γ-formulas
and closure (�) with the specific rules of Zenon. We list below the five sets of
rules and their elements:

α α¬∨, α∧, α¬⇒, α¬¬,¬refl
unfolding rules

β β∨, β¬∧, β⇒, β⇔, β¬⇔, 6=func
trans, pred, sym, transsym, transeq, transeqsym

δ δ∃, δ¬∀
γ γ∀, γ¬∃, γ∀inst, γ¬∃inst, γ∀un, γ¬∃un
� �>,�⊥,�,�r,�s

As hinted by the use of the ε symbol in the rules, the δ rules are handled
with Hilbert’s operator [7] rather than using skolemization.

The following subsections describe specific features of our theorem prover,
starting with how metavariables are used in a non-destructive setting.

2.1 Handling of Metavariables

What we call here metavariables are often named free variables in tableau-related
literature. They are not used as variables in Zenon as they are never substituted.

Instead of substitution, we use the following method: when we encounter a
universal formula ∀x P (x), we apply rule γ∀M , which introduces a new metavari-
able, linked to this universal formula. Then, when we have a potential contra-
diction such as ¬Rr(t,X), we apply rule γ∀inst (with the t given by the potential
contradiction) in the current branch to our original universal formula. If this
instantiation closes the subtree rooted at the γ∀inst node, we know that pruning
(see section 2.2) will remove the nodes between the two γ nodes, hence removing
the need for substitution of the metavariable.



Closure and cut rules

⊥ �⊥�
¬> �¬>�

cut
P | ¬P

¬Rr(t, t) �r�
P ¬P ��

Rs(a, b) ¬Rs(b, a) �s�

Analytic rules

¬¬P α¬¬
P

P ⇔ Q
β⇔¬P,¬Q | P,Q

¬(P ⇔ Q)
β¬⇔¬P,Q | P,¬Q

P ∧Q
α∧

P,Q

¬(P ∨Q)
α¬∨¬P,¬Q

¬(P ⇒ Q)
β¬⇒

P,¬Q

P ∨Q
β∨

P | Q
¬(P ∧Q)

β¬∧¬P | ¬Q
P ⇒ Q

β⇒¬P | Q

∃x P (x)
δ∃

P (ε(x).P (x))

¬∀x P (x)
δ¬∀¬P (ε(x).P (x))

γ-rules

∀x P (x)
γ∀M

P (X)

¬∃x P (x)
γ¬∃M

¬P (X)

∀x P (x)
γ∀un

∀x1...xn P (s(x1, ..., xn))

∀x P (x)
γ∀inst

P (t)

¬∃x P (x)
γ¬∃inst

¬P (t)

¬∃x P (x)
γ¬∃un

¬∃x1...xn P (s(x1, ..., xn))

Relational rules

P (t1, ..., tn) ¬P (s1, .., sn)
pred

t1 6= s1 | ... | tn 6= sn

f(t1, ..., tn) 6= f(s1, ..., sn)
fun

t1 6= s1 | ... | tn 6= sn

Rs(s, t) ¬Rs(u, v) sym
t 6= u | s 6= v

¬Rr(s, t) ¬refl
s 6= t

Rt(s, t) ¬Rt(u, v)
trans

u 6= s,¬Rt(u, s) | t 6= v,¬Rt(t, v)

Rts(s, t) ¬Rts(u, v) transsym
v 6= s,¬Rts(v, s) | t 6= u,¬Rts(t, u)

s = t Rt(u, v) transeq
u 6= s,¬Rt(u, s) | ¬Rt(u, s),¬Rt(t, v) | t 6= v,¬Rt(t, v)

s = t Rts(u, v) transeqsym
v 6= s,¬Rts(v, s) | ¬Rts(v, s),¬Rts(t, u) | t 6= u,¬Rts(t, u)

where Rr, Rs, Rt, and Rts are respectively reflexive, symmetric, transitive,
and transitive-symmetric relations.

Fig. 1. MLproof rules (part 1)



Unfolding rules: if P (x)=̂Def(x) and f(x)=̂def(x) then

P (x)
p-unfold

Def(x)
¬P (x)

p-unfold¬¬Def(x)

f(x) = t
f-unfoldl=def(x) = t

t = f(x)
f-unfoldr=

t = def(x)

f(x) 6= t
f-unfoldldef(x) 6= t

t 6= f(x)
f-unfoldr

t 6= def(x)

Extension rule

C1, ..., Cp ext(name,args,
[Ci],[H1j , ..., Hnk])H11, ..., H1m | ... | Hn1, ..., Hnq

where name is the name of a predefined lemma s.t.
C1 ∧ ... ∧ Cp ⇒

W
j(

V
i Hij)

Fig. 2. MLproof rules (part 2)

If the instantiation does not close the subtree, the formulas containing the
metavariable are still available in the current branch to trigger other potential
contradictions, hence we get as many instantiations as needed from a single
application of the γ∀M rule. This means that we do not need to use iterative
deepening to ensure completeness.

Let us consider the following example:

∀x, P (x) ∨Q(x) ¬P (a) ¬Q(a) γ∀M
P (X) ∨Q(X)

β∨P (X) γ∀inst
P (a) ∨Q(a)

β∨P (a) ��
Q(a) ��

Q(X)

In this case, the rule γ∀inst is triggered by the match between ¬P (a) and
P (X), which tells us to instantiate ∀x, P (x) ∨Q(x) with the value a. This tree
is not a complete proof because it has an open branch (under Q(X)). As we will
see in Section 2.2, this open branch does not need to be explored because we
can remove it (along with some nodes) to yield a closed proof tree of the original
formulas.

2.2 Minimizing the Tree Size

For efficient proof search, a prover must minimize the size of the search tree. This
is done in two ways. The first is by choosing the order in which the rules are



applied : non-branching rules are tried first. It induces the following ≺ ordering
on the application of the rules � ≺ α ≺ δ ≺ β ≺ γ, stating thereby that any
applicable � rule has priority over any of the other possible rules.

The second is by pruning. When a branching node N has a closed subtree as
one of its branches B, we can examine this closed subtree to determine which
formulas are useful. If the formula introduced by N in B is not in the set of
useful formulas, we can remove N and graft the subtree in its place because the
subtree is a valid refutation of B without N .

The notion of useful formula is defined as follows: a formula is useful in a
subtree if it is one of the formulas appearing in the hypotheses (the upper side)
of a rule application in that subtree.

Consider the example of section 2.1. There is a subtree rooted at the ∀inst
node. This subtree does not use the formula P (X) that appears just above it,
because the premise of the ∀inst rule is the formula ∀x, P (x) ∨Q(x) at the root
of the proof tree, and none of the other subtree nodes uses P (X). Because of
this, we can remove the β∨ node above the subtree, and graft the subtree in its
place. We can proceed in the same fashion to remove the γ∀M node, and we get
the following tree:

∀x, P (x) ∨Q(x) ¬P (a) ¬Q(a) γ∀inst
P (a) ∨Q(a)

β∨P (a) ��
Q(a) ��

This time, the proof tree is closed and the proof search is over. The impor-
tance of this pruning is that we have completely avoided doing the proof search
below the Q(X) branch by carefully examining the result of the proof search in
the P (X) branch, thereby reducing the branching factor of the search tree. In
the process, we have reduced the size of the resulting proof as compared to the
proof search tree.

2.3 Extensions

Zenon offers the ability to extend its core of deductive rules to match certain
specific requirements. For instance, the extension named Coqbool is regularly
used in the setting of Focal, where a function P (x, y) returning a boolean result
is encapsulated into a Is_true(P(x,y)) predicate as it is translated into the cor-
responding Coq file. In the case where P is transitive (for example), this prevents
Zenon from using its specific inference rules, thereby reducing the efficiency of the
proof search. Our solution is to transform all occurrences of Is_true(P(x,y))
into a corresponding Is_true__P(x,y) predicate which will let Zenon make use
of its transitivity property.

Concretely, extensions are arbitrary OCaml files that implement new inference
rules; they are loaded through command-line options when Zenon is started,
along with Coq files containing the lemmas used to translate the inference rules
introduced by the extension.



2.4 Subsumption

Whenever the current branch contains a superset of the formulas used in an
already-closed subtree, we can graft this subtree at the current node because it
is a valid closure of the current branch. The implementation maintains a data
structure with all the subtrees closed so far (indexed by their used formulas) and
queries this data each time a formula is added to the current branch.

We can illustrate subsumption with the following example:

B ∨ C B ⇒ D C ⇒ D D ⇒ E ¬E
β∨B

β⇒¬B ��
D∗

β⇒¬D ��
E ��

C
β⇒¬C ��

D

Consider the D∗ subtree in the left half of the tree and the open branch under
D. The formulas used by the D∗ subtree are D, D ⇒ E, and ¬E. The same
formulas are already available in the open branch, thus we do not need to search
for a proof: we can simply reuse the D∗ subtree. In fact, the implementation
does not copy the subtree, but uses sharing (hence turning the proof tree into a
dag). Such shared subtrees appear as lemmas in the Coq proof output.

3 LLproof

LLproof is the low-level language of proofs produced by Zenon, which makes the
generation of machine checkable proofs possible (see Section 4 for an example in
the framework of Coq). Once a proof has been found with the MLproof rules, it
is translated to this sequent-like language. We will sketch a proof of soundness
and completeness of MLproof proofs w.r.t. LLproof proofs.

LLproof rules (Figures 3 and 4) indeed describe a one-sided sequent calculus
with explicit contractions in every inference rule, which roughly resembles an
upside-down non-destructive tableau method. This sequent calculus is extended
to handle unfolding, lemmas and the extension mechanism of Zenon.

Translating mid-level to low-level proofs gives us a direct proof of soundness
for MLproof w.r.t. LLproof. There is a one-to-one correspondence between parts
of the two calculi, most notably those which do not introduce quantifiers in
MLproof (quantifier-free fragment, axioms).

We can now proceed to prove the following proposition.

Theorem 1 (Soundness and completeness of MLproof w.r.t. LLproof).

1. Every formula provable in LLproof has a proof in MLproof.
2. Every formula provable in MLproof has a proof in LLproof.

Proof. Proof of (1) is immediate as every rule of LLproof has a direct equivalent
in MLproof, except the lemma rule, but we can only apply the lemma rule when



Closure and quantifier-free rules

⊥⊥ ` ⊥ ¬>¬> ` ⊥
ax

Γ, P,¬P ` ⊥

6=
t 6= t ` ⊥

Γ, P,¬¬P ` ⊥ ¬¬
Γ, P ` ⊥

Γ, P ` ⊥ Γ,¬P ` ⊥
cut

Γ ` ⊥

Γ, P ∧Q,P,Q ` ⊥
∧

Γ, P ∧Q ` ⊥
Γ, P ∨Q,P ` ⊥ Γ, P ∨Q,Q ` ⊥

∨
Γ, P ∨Q ` ⊥

Γ, P,¬Q,¬(P ⇒ Q) ` ⊥
¬ ⇒

Γ,¬(P ⇒ Q) ` ⊥
Γ,¬P, P ⇒ Q ` ⊥ Γ,Q, P ⇒ Q ` ⊥ ⇒

Γ, P ⇒ Q ` ⊥

Γ,¬P,¬Q,¬(P ∨Q) ` ⊥
¬ ∨

Γ,¬(P ∨Q) ` ⊥
Γ,¬P,¬(P ∧Q) ` ⊥ Γ,¬Q,¬(P ∧Q) ` ⊥

¬ ∧
Γ,¬(P ∧Q) ` ⊥

Γ, P ⇔ Q,¬P,¬Q ` ⊥ Γ, P ⇔ Q,P,Q ` ⊥ ⇔
Γ, P ⇔ Q ` ⊥

Γ,¬P,Q,¬(P ⇔ Q) ` ⊥ Γ, P,¬Q,¬(P ⇔ Q) ` ⊥
¬ ⇔

Γ,¬(P ⇔ Q) ` ⊥

Fig. 3. LLproof rules (part 1)

we have a proof of the lemma’s statement, which we can handle in MLproof by
grafting a copy of the lemma’s proof in the place of the lemma rule.

The proof of (2) is not so immediate as we have to transform some MLproof
rules which are the combination of two or more lower-level rules. It proceeds by
induction on the size of the MLproof proofs; the details of the proof are not given
here.

4 Producing Coq Proofs

As we said in the introduction, Zenon is able to produce Coq [13] proofs, and
this automatic generation is carried out from the LLproof format described in
Section 3. From a theoretical point of view, this feature ensures the soundness of
the LLproof formalism (w.r.t. a known theory), whereas from a practical point of
view, this provides a (local) guarantee of Zenon’s implementation. But especially,
in the context of the Focal system [15], this allows us to produce homogeneous
Coq code (where the Coq proofs built by Zenon are reinserted in the Coq speci-
fications generated by the Focal compiler), that can be fully verified by Coq.

4.1 Translation

The translation consists in producing, from proofs provided in LLproof format,
proofs in the theory of the theorem prover we chose to perform the validation,



Quantifier rules

Γ, P (c), ∃x P (x) ` ⊥
∃

Γ,∃x P (x) ` ⊥
Γ,¬P (c),¬∀x P (x) ` ⊥

¬∀
Γ,¬∀x P (x) ` ⊥

where c is a fresh constant

Γ, P (t), ∀x P (x) ` ⊥
∀

Γ,∀x P (x) ` ⊥
Γ,¬P (t),¬∃x P (x) ` ⊥

¬∃
Γ,¬∃x P (x) ` ⊥

where t is any closed term

Special rules

∆, t1 6= u1 ` ⊥ ... ∆, tn 6= un ` ⊥ pred
Γ, P (t1, ..., tn),¬P (u1, ..., un) ` ⊥

where ∆ = Γ ∪ {P (t1, ..., tn),¬P (u1, ..., un)}

∆, t1 6= u1 ` ⊥ ... ∆, tn 6= un ` ⊥
fun

Γ, f(t1, ..., tn) 6= f(u1, ..., un) ` ⊥

where ∆ = Γ ∪ {f(t1, ..., tn) 6= f(u1, ..., un)}

Γ,C,H ` ⊥
def(name,C,H)

Γ,C ` ⊥

if one can go from C to H by unfolding definition name.

∆,H11, ..., H1m ` ⊥ ... ∆,Hn1, ..., Hnq ` ⊥ ext(name,args,
[Ci],[H1j , ..., Hnk])Γ,C1, ..., Cp ` ⊥

where ∆ = Γ ∪ {C1, ..., Cp}
name is the name of a predefined lemma s.t.
C1 ∧ ... ∧ Cp ⇒

W
j(

V
i Hij)

lemma(name, args)
C ` ⊥

if C is the conclusion associated with name in the list of previously-done proofs.
Arguments args are the parameters of name.

Fig. 4. LLproof rules (part 2)

which is Coq in our case. This translation is not straightforward for some rea-
sons inherent to the underlying theory of Coq, but also to Coq itself. One of
them is that the theory of Coq is based on an intuitionistic logic, i.e. without
the excluded middle, whereas LLproof is purely classical. To adapt the theory of
Coq to LLproof, we have to add the excluded middle and the resulting theory is
still consistent. But Coq does not provide a genuine classical mode (even if the
classical library is loaded), i.e. with a classical sequent allowing several propo-
sitions on the right hand side, so that proofs must still be completed using an



intuitionistic sequent (with only one proposition to the right hand side) and the
excluded middle must be added as an axiom. Such a system does not correspond
to Gentzen’s LK sequent calculus, which is normally used when doing classical
proofs, but rather to Gentzen’s LJ sequent calculus provided with an explicit
excluded middle rule. From a practical point of view, doing proofs in this system
is more difficult than in LK (where the right contraction rule is a good short-
cut), but in our case this has little effect because all our proofs are produced
automatically.

Beyond predicate calculus in general, Zenon, like most of first order auto-
mated deduction systems, considers equality as a special predicate and uses
specific rules to deal with it. Thus, to translate equality proofs correctly, we
have to extend the theory of LJ with equational logic rules. Such a theory will
be called LJeq (due to space constraints, we cannot give the corresponding rules,
but this theory is quite standard and can be found in literature).

We have the following theorem:

Theorem 2 (Soundness of LLproof w.r.t. LJeq). Every sequent provable in
LLproof has a proof in LJeq.

Proof. The proof is done by induction over the structure of the proof of the
sequent in LLproof. Due to space constraints, we cannot detail the many cases,
but as an example, we can consider the translation of the ¬ ∧ rule of LLproof,
which is the following:

π1

Γ ,¬(P ∧Q),¬P ` ⊥
π2

Γ ,¬(P ∧Q),¬Q ` ⊥
¬ ∧

Γ ,¬(P ∧Q) ` ⊥

where π1 and π2 are respectively the proofs of Γ ,¬(P ∧ Q),¬P ` ⊥ and
Γ ,¬(P ∧Q),¬Q ` ⊥.

This rule is translated in LJeq as follows:

π̂1

Γ ,¬(P ∧Q),¬P ` ⊥ ¬right
Γ ,¬(P ∧Q) ` ¬¬P

em
Γ ,¬(P ∧Q) ` P

π̂2

Γ ,¬(P ∧Q),¬Q ` ⊥ ¬right
Γ ,¬(P ∧Q) ` ¬¬Q

em
Γ ,¬(P ∧Q) ` Q ∧right

Γ ,¬(P ∧Q) ` P ∧Q ¬left
Γ ,¬(P ∧Q),¬(P ∧Q) ` ⊥

cont
Γ ,¬(P ∧Q) ` ⊥

where π̂1 and π̂2 are the translated proofs of π1 and π2, em the excluded
middle rule, cont the left contraction rule, ¬/∧ right the right rule for ¬/∧ , and
¬left the left rule for ¬.



4.2 Implementation

General Scheme The proof of Theorem 2 allows Zenon to produce Coq proofs
from proofs in LLproof, since LJeq is included in the underlying theory of Coq,
i.e. the Calculus of Inductive Constructions (CIC for short). Actually, we have
two kinds of translations: a first one generating proof scripts and a second one
directly generating proof terms (thanks to the Curry-Howard isomorphism capa-
bility of Coq). In both translations, in order to factorize proofs and especially to
minimize the size of the produced proofs, the idea is not to build the proof scripts
corresponding to the translated rules, but to prove a lemma for each translated
rule once and for all (a macro tactic in Ltac is not appropriate because the body
of these macros is rerun each time a translated rule is used in a proof). Thus,
the generated Coq proofs are just sequences of applications of these lemmas, and
they are not only quite compact, but also quite efficient in the sense that the
corresponding Coq checking is fast. For instance, if we consider the ¬ ∧ rule of
LLproof translated in the proof of Theorem 2, the associated Coq lemma is the
following:

Lemma zenon_notand : f o ra l l P Q : Prop ,
(∼P→ False ) → (∼Q→ False ) → (∼(P ∧ Q) → False ) .

As an example of complete Coq proof produced by Zenon and involving the
previous lemma, let us consider the proof of ¬(P ∧ Q) ⇒ ¬P ∨ ¬Q, where P
and Q are two propositional variables. For this proof, Zenon is able to generate
a Coq proof script as follows:

Parameters P Q : Prop .
Lemma de_morgan : ∼(P ∧ Q) → ∼P ∨ ∼Q.
Proof .

apply NNPP. intro G.
apply ( notimply_s _ _ G) . zenon_intro H2 . zenon_intro H1 .
apply ( notor_s _ _ H1 ) . zenon_intro H4 . zenon_intro H3 .
apply H3 . zenon_intro H5 .
apply H4 . zenon_intro H6 .
apply ( notand_s _ _ H2 ) ;

[ zenon_intro H8 | zenon_intro H7 ] .
exact (H8 H6 ) .
exact (H7 H5 ) .

Qed .

where NNPP is the excluded middle, rule_s (where rule is notimply, notor,
etc) a definition which allows us to apply partially the corresponding lemma rule
providing the arguments at any position (not only beginning by the leftmost po-
sition), and zenon_intro a macro tactic to introduce (in the context) hypotheses
with possibly fresh names if the provided names are already used.

For the same example, Zenon is also able to directly produce the following
proof term (without the help of Coq):

Parameters P Q : Prop .
Lemma de_morgan : ∼(P ∧ Q) → ∼P ∨ ∼Q.



Proof .
exact (NNPP _ ( fun G : ∼(∼(P ∧ Q) → ∼P ∨ ∼Q) ⇒ ( notimply

(∼(P ∧ Q)) (∼P ∨ ∼Q) ( fun (H5 : ∼(P ∧ Q))
(H8 : ∼(∼P ∨ ∼Q)) ⇒ ( notor (∼P) (∼Q) ( fun (H6 : ∼∼P)
(H7 : ∼∼Q) ⇒ (H7 ( fun H1 : Q ⇒ (H6
( fun H3 : P ⇒ ( notand P Q ( fun H4 : ∼P ⇒ (H4 H3) )
( fun H2 : ∼Q ⇒ (H2 H1) ) H5 ) ) ) ) ) ) H8) ) G) ) ) .

Qed .

As said in the introduction, this possibility of generating proof terms is par-
ticularly important in the sense that Zenon verifies the De Bruijn criterion [1], i.e.
it generates a proof format that can be checked by Coq but also independently,
by means of another program or proof system which implements the same type
theory. For example, as an alternative and with an appropriate printer, we can
imagine using the Matita [16] theorem prover, which has the same underlying
theory (CIC) as Coq.

Difficulties In this implementation, we have to be aware of some difficulties.
One of them is that we plug first order logic, which is a priori untyped, into
a typed calculus (CIC). To deal with this problem, we consider that we have
a mono-sorted first order logic, of sort U, and we provide types to variables,
constants, predicates and functions explicitly (the type inference offered by Coq
does not always allow us to guess these types). Obviously, this must be done only
when dealing with purely first order propositions, but can be avoided with propo-
sitions coming from Coq or Focal, which are possible inputs for Zenon, since these
systems are strongly typed and Zenon keeps the corresponding type information
(this is possible since Zenon works in a non-destructive way, see Section 2); in
this case, we generally have a multi-sorted first order logic.

Another difficulty, probably deeper, is that mono/multi-sorted first order
logic implicitly supposes that each sort is not empty, while in the CIC, types
may be not inhabited. This problem is fixed by skolemizing the theory and
considering at least one element for each sort, e.g. E for U. Thus, for example,
it is possible to prove Smullyan’s drinker paradox with Zenon as follows:
Parameter U : Set .
Parameter E : U.
Parameter d : U→ Prop .
Lemma drinker_paradox :

exists X : U, (d X) → f o ra l l Y : U, (d Y) .
Proof .

apply NNPP. intro G.
apply G. exists E. apply NNPP. zenon_intro H3 .
apply ( notimply_s _ _ H3 ) . zenon_intro H5 . zenon_intro H4 .
apply H4 . zenon_intro T0 . apply NNPP. zenon_intro H6 .
apply G. exists T0 . apply NNPP. zenon_intro H7 .
apply ( notimply_s _ _ H7 ) . zenon_intro H8 . zenon_intro H4 .
exact (H6 H8 ) .

Qed .



5 Using Zenon in Practice

In this section, we consider the effectiveness of Zenon through benchmarks and
applications. The interested reader can get the distribution of Zenon, which is
available either as part of the Focal environment at http://focal.inria.fr/,
or directly (as a separate tool) at http://focal.inria.fr/zenon/.

5.1 Benchmarks

In order to see how Zenon fares w.r.t. available first-order theorem provers, we
benchmarked it against parts of the latest TPTP library [12] release (v3.2.0).
The Zenon runs were made on an Apple Power Mac Core 2 Duo 2 GHz, with
Zenon’s default timeout of 5 min and size limit of 400 Mbytes. The set of TPTP
syntactic problems SYN was chosen as representative of Zenon’s typical target
problems, and indeed we get good results. We also tried Zenon against the prob-
lems of the FOF category for the latest CASC competition [11].

Problems Proof found No proof
time size other

SYN theorems (282) 264 10 7 1
CASC-J3 (150) 48 46 56 0

Some of the formulas proved by Zenon in CASC have a rather high rating,
such as SWV026+1 (0.79), SWV038+1 (0.71), or MSC010+1 (0.57). This last
one consists in proving ¬¬P , assuming P , where P is a large first-order formula.
Thanks to the tableau method, Zenon does not need to decompose the formula,
and the proof is found immediately. All the proofs found by Zenon were verified
by Coq.

5.2 The EDEMOI Project

In the framework of the EDEMOI4 [10] project, Zenon was used to certify the
formal models of two regulations related to airport security: the first one is the
international standard Annex 17 produced by the International Civil Aviation
Organization (ICAO), an agency of the United Nations; the second one is the Eu-
ropean Directive Doc 2320 produced by the European Civil Aviation Conference
(ECAC) and which is supposed to refine the first one at the European level. The
EDEMOI project aims to integrate and apply several requirements engineering
and formal methods techniques to analyze standards in the domain of airport
security. The novelty of the methodology developed in this project, resides in
the application of techniques, usually reserved for safety-critical software, to the
domain of regulations (in which no implementation is expected).
4 The EDEMOI project is supported by the French National "Action Concertée Inci-
tative Sécurité Informatique".



The two formal models of the two considered standards were completed using
the Focal [15] environment and can be found in [3], where the reader can also find
a brief description of Focal. In this formalization, Zenon was used to prove the
several identified theorems ensuring the correctness and the completeness of both
regulations (consistency was not studied formally). Concretely, the development
represents about 10,000 lines of Focal and 200 proofs (2 years to be completed).
Regarding the validation part, Zenon allowed us to discharge most of the proof
obligations automatically (about 90% of them). Actually, Zenon also succeeded
in completing the remaining 10% automatically but beyond the default timeout
(set to 3 min in Focal). This tends to show that Zenon is quite appropriate when
dealing with abstract specifications (no concrete types and very few definitions).
Zenon also helped us to study the consistency of the regulations from a prac-
tical point of view. The idea is to try to derive False from the set of security
properties and to let Zenon work on it for a while. If the proof succeeds then we
have a contradiction, otherwise we can only have a certain level of confidence.
This approach may seem rather naive but appears quite pertinent when used
to identify the correlation between the several security measures according to
specific attack scenarios. The principle is to falsify an existing hypothesis or to
add an inconsistent hypothesis and to study its impact over the entire regula-
tion, i.e. where the potential conflicts are located and which security properties
are concerned. For more information regarding this experiment with Zenon, the
reader can refer to [4].

6 Conclusion

Zenon is an experiment in progress, but we already have a reasonably powerful
prover (see the benchmarks) that can output actual proofs in Coq format (proof
scripts or proof terms) for use in a skeptic-style system, such as the Focal envi-
ronment for example. In addition, the help provided by Zenon in the EDEMOI
project framework, where most of the proofs were discharged (and even all the
proofs with an extended timeout), tends to show how this tool is appropriate for
real-world applications, so that we can be quite optimistic regarding its use, in
particular in the context of Focal.

Future work will focus on improving the handling of metavariables in order
to get better heuristics for finding the right instantiations, and on implement-
ing some theory-based reasoning by using the extension mechanism of Zenon.
Amongst other extensions, we plan to add a theory of arithmetic, but also
reasoning by induction (this feature is under development), which is crucial
when dealing with specifications close to implementations involving, in partic-
ular, concrete datatypes. Finally, it is quite important to apply Zenon to other
case-studies, not only to get a relative measure of its automation power, but
also to understand the practical needs of automation. For example, proofs pro-
vided by Zenon are progressively integrated into the Focal standard library [15]
(which mainly consists of a large kernel of Computer Algebra), and a certified
development regarding security policies [6] is in progress.
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